Instructor

• Willem A (Vlakkies) Schreüder

• Email: willem@prinmath.com
 - Begin subject with 4229 or 5229
 - Resend email not answered promptly

• Office Hours:
 - Before and after Class
 - By appointment

• Weekday Contact Hours: 6:30am - 9:00pm
Course Objectives

• Class: Theory and principles
 – Attendance is encouraged
• Assignments: Practical OpenGL
 – Applications
• No tests or exams

• By the end of the course you will:
 – Be conversant in computer graphics principles
 – Be well versed in the use of OpenGL
 – Understand what OpenGL does internally
Course Outline

• Basics (1/3)
 − Projections, transformations, clipping, rendering, text, color, hidden edge and surface removal, and interaction

• Advanced (1/3)
 − Illumination, shading, transparency, texture mapping, parametric surfaces, shaders

• Project (1/3)
 − Whatever you're interested in: games, modeling, visualization, 'Google Earth',
Why OpenGL?

- Modern, widely used and actively supported
 - Games
 - 3D visualization
- Cross platform
 - Windows
 - Mac
 - *NIX
- Open source and vendor implementations
 - MESA 3D (source code available)
- Many language bindings
Assumptions

• You need to be fluent in C
 – Examples are in C
 – You can do assignments in any language
 • I may need help getting it to work on my system

• You need to be comfortable with linear algebra
 – Matrix and Vector multiplication
 – Dot and cross products
 – Rotation matrices
Grading

• Satisfactory complete all assignments => A
 – The goal is to impress your friends
• Assignments must be submitted on time unless prior arrangements are made
 – Due Thursday evening 11:59 pm
 – Grace period until Friday morning at 06:30am
• Assignments must be completed individually
 – Stealing ideas are permitted
 – OpenGL code fragments from the web may be used
• OpenGL: A Primer, 3/E
 - Edward Angel
 - An excellent and very accessible introduction to OpenGL - and inexpensive
 - Third edition adds new material including shaders
 - Recommended but not required

• Computer Graphics: Principles & Practice (2ed)
 - Foley, van Dam, Feiner & Hughes
 - Avoid 1ed (Pascal), 2ed also a bit dated
 - Get it if you want to know more of the theory
Other Texts

• OpenGL Programming Guide (5ed)
 − Shreiner, Woo, Neider & Davis
 − “OpenGL Red Book”
 − Download previous editions as PDF

• OpenGL SuperBible: Comprehensive Tutorial and Reference (4ed)
 − Wright, Lipchak & Haemel
 − Good all-round theory and applications
And More Texts

- **OpenGL Shading Language (2ed)**
 - Randi J. Rost
 - “OpenGL Orange Book”
 - Introduces both OpenGL and Shaders

- **OpenGL Reference Manual (4ed)**
 - OpenGL Architecture Review Board & Dave Shreiner
 - “OpenGL Blue Book”
 - Official Reference Document to OpenGL, Version 1.4
 - A bit dated, very similar to man pages
OpenGL Resources

• www.google.com
 – Need I say more?

• www.opengl.org
 – Code and tutorials

• nehe.gamedev.net
 – Excellent tutorials

• www.mesa3d.org
 – Code of “internals”
Assignment 0

• Due: **Wednesday** Sep 5, 2007

• Sign up with moodle.cs.colorado.edu
 - Enrollment key: 42295229
 - A picture will help me learn your names

• Submit
 - Your name and study area
 - Platform (Hardware, Graphics, OS, ...)
 - Background and interests in computer graphics
 - Project ideas (if you have one already)
My information

• Mathematical modeling and data analysis
 – PhD Computational Fluid Dynamics [1986]
 – PhD Parallel Systems (CU Boulder) [2005]
 – President of Principia Mathematica

• Use graphics for scientific visualization

• Open source bigot

• Program in C, C++, Fortran and Perl
Assignment 1

• Due: Thursday Sep 13, 2007
• Get OpenGL to work on your platform
 – Compile and run `gears.c`
 – Report frame rate for 1x1, 300x300 and full screen
 – Explain your results
• If you are on an X based (*NIX) platform:
 – Run glxinfo and check if `direct rendering: yes`
 – Look into enabling hardware support
Assignment 2

• Due: Sep 20, 2007

• Write an OpenGL based visualization of the Lorenz Attractor
 − At a minimum show a static line path in 3D
 − Add rotation using cursor keys
 − Use your imagination

• The purpose is scientific visualization
 − Do some science

http://mathworld.wolfram.com/LorenzAttractor.html
Nuts and Bolts

• Complete assignments on any platform
 − Assignments reviewed under Fedora Core
 − Set #ifdef so I can compile and run it

• Submit using moodle.cs.colorado.edu
 − ZIP or TAR
 − Name executables hw1, hw2, ...
 − Set makefile so I can do make LINUX=1
 − Set window title to Assignment X: Your Name

• Include number of hours spent on assignment
A few hints

• My machine runs Fedora Core x86_64
 – gcc/g++ with Mesa3D & GLX
 • -Wall is a really good idea
 – case sensitive file names
 – int=32bit, long=64bit
 – little-endian
 – fairly good performance

• How to make my life easier
 – Try it in CSEL or a Linux box
 – Stick to C/C++ unless you have a good reason
The Importance of Graphics:
100 Values between 0 and 1
100 Values between 0 and 1
The Importance of Graphics
Graphic Design

• 2D vs. 3D
 − Cool vs. informative

• Edward R. Tufte
 − Visual Explanations
 − Envisioning Information
 − The Visual Display of Quantitative Information
 − Beautiful Evidence
Saturn from Cassini Probe
Colorado Fall Colors
What is wrong with this picture?
In the beginning....
Storage Tube Terminals
Storage Display Images
Color: Multiple Pen Plotters
Raster Graphic Terminals
Color Inkjets
Workstations: Apollo DN 330
12 MHz 68020, 3MB RAM, 70MB disk
Plotting Packages

- PLOT-10: Tektronix 4010 graphics
- PLOT88: PC graphics
- DISSPLA: NCAR graphics
- GINO: Portable graphics
- DIGLIB: LLNL device-independent, open source
- GKS: Graphics Kernel System (2D vector)
- PHIGS: 3D Interactive Graphics
The rise of OpenGL

• Originated as SGI IrisGL
• Vendor-neutral OpenGL controlled by ARB
• Hides the details of hardware
 – Software emulation when necessary
 – Hardware acceleration when possible
• Supports 2D to advanced 3D graphics
• Portable to most hardware and OS with WGL, AGL and GLX
Gaming and Graphics

- Text based/ASCII graphics (Pong, PacMan)
- 2D monochrome line graphics (Astroids)
- 2D images & sprites (Mario)
- 3D graphics
 - Flight Simulators (2D -> 3D)
 - First Person Shooters
 - Multi-player games
- Games push the envelope
 - Realism
 - Speed