

Introduction
to OpenGL

CSCI 4229/5229
Computer Graphics

Fall 2007

OpenGL by Example
● Learn OpenGL by reading
● nehe.gamedev.net

– Excellent free tutorial
– Code available for many platforms and languages

● OpenGL: A Primer (2ed) by Edward Angel
– Short and sweet

● OpenGL Programming Guide (Red Book)
– Free older editions as PDF

● OpenGL Superbible
– Theory and Applications

What is OpenGL?
● Sometimes called a language, actually an

Application Programming Interface (API)
● Specification is controlled by OpenGL

Architecture Review Board (ARB)
● Multiple implementations by different vendors

– Mesa & FreeGLUT free implementations
● OpenGL just does real time graphics

– Need GLX/WGL/AGL for windowing and input
– Limited font support (in GLUT)
– No sound, printing, etc. support

OpenGL Versions

1.0 Initial release (1992)

1.1 Major upgrade (1997)
– Lastest version on some Windows system

1.2 Improves textures (1998)

1.3-1.5 Incremental improvements (2001-2003)

2.0 Relaxes resrictions, adds shader (2004)

2.1 Incremental improvement (2006)

3.0 Shaders everywhere (2007?)

OpenGL APIs
● Languages

– C, C++, C#
– FORTRAN
– Java
– Perl
– Python
– Ada

● Packages
– Qt (QGLWidget)
– Many others

OpenGL and Friends

From OpenGL: A Primer

OpenGL on X11

From OpenGL: A Primer

GLU: OpenGL Utility

● Higher Level and Convenience Functions
– Projections
– Creating texture maps
– NURBS, quadrics, tessalation
– Predefined objects (sphere, cylinder, teapot)

● Collections of calls for convenience
● Standard with all OpenGL implementations

GLUT: GL Utility Toolkit

● Provides access to OS and Window System
– Open windows and setting size and capabilities
– Register and triggers callbacks
– Keyboard and mouse interaction
– Elementary fonts

● Not part of OpenGL, but provides a portable
abstraction of the OS
– FreeGLUT
– OpenGLUT

Header Files and Libraries
● Usually you only need

– #include <GL/glut.h>
● Header file locations

– /usr/include/GL on most systems
– /usr/X11R6/include/GL on some systems

● Linking may only need
– -l glut
– -l glut -lGL

● On some systems you may need
– -L /usr/X11R6/lib or -L /usr/X11R6/lib64

OpenGL Naming Convention
● glDoSomethingXy()

– DoSomething is the name of the function
– X is 2 or 3 or 4 for the dimension
– y is for the the variable type

● b GLbyte (signed char) 8 bit
● s GLshort (signed short) 16 bit
● i GLint (signed int) 32 bit
● ub GLubute (unsigned char) 8 bit
● us GLushort (unsigned short) 16 bit
● ui GLuint (unsigned int) 32 bit
● f GLfloat (float) 32 bit
● d GLdouble (double) 64 bit

OpenGL Naming Example

● Vertex
– glVertex3i(0 , 0 , 1)
– glVertex2d(27.34 , 88.12)
– glVertex3dv(array)

● Few functions return a value
● Most functions created by name mangling
● Constants are GL_SOMETHING
● Variable types are GLsomething

GLUT and GLU Naming

● Functions
– glutDoSomething
– gluDoSomething

● Constants
– GLUT_SOMETHING
– GLU_SOMETHING

● You can always tell by the name which API
supplies a function or constant

● Avoid things starting with glx, wgl & agl

GLUT: GL Utility Toolkit

● Supplies interface to OS
– Windowing
– Interaction

● Hello World in GLUT (well sorta)
int main(int argc,char* argv[])

{

 glutInit(&argc,argv);

 glutCreateWindow(“Hello Wor ld”);

 glutDisplayFunc(display);

 glutMainLoop();

}

Completing Hello World
● Draw a triangle

#include <GL/glut.h>

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 glVertex2f(0.0,0.5);

 glVertex2f(0.5,-0.5);

 glVertex2f(-0.5,-0.5);

 glEnd();

 glFlush();

}

Compile, link and run

● cc -o helloworld helloworld.c -lglut
● Heavily relies on defaults

– Window
– Viewport
– Projection
– Color

Types of Objects
● glBegin(type)

– GL_POINTS points
– GL_LINES lines between pairs of points
– GL_LINE_STRIP series of line segments
– GL_LINE_LOOP closed GL_LINE_STRIP
– GL_POLYGON simple polygon
– GL_TRIANGLES triangles between triples of points
– GL_TRIANGLE_STRIP series of triangles
– GL_TRIANGLE_FAN fan of triangles

● Set coordinates with glVertex
● glEnd()

Qualifiers

● glPointSize(float size)
– POINT size in pixels (default 1)

● glLineWidth(float width)
– LINE width in pixels (default 1)

● glLineStipple(int factor,unsigned short pattern)
– LINE type
– Requires glEnable(GL_LINE_STIPPLE)

Color
● Default is RGB color

– X11 TrueColor
– R,G,B 0-1 or integer range

● glColor3f(1.0 , 0.0 .0.0)
● glColor3b(127 , 0 , 0);
● glColor3ub(255 , 0 , 0);
● glColor3fv(rgbarray);

● Color can also contain transparency (alpha)
– glColor4f(1.0 , 0.0 . 0.0 , 0.5);
– Default alpha=1 (opaque)

● Stays in effect until you change color

Indexed Color
● X11 Direct Color

– Based on a colormap
● Set color using glIndexi(27)
● Need to load colors into color map using

glutSetColor()
● Use RGB color unless hardware constrained

Displaying an Image

● glClear()
● Draw Something
● glFlush()
● glutSwapBuffers()
● Schedule using glutPostRedisplay()

Transformations

● Transformation apply to everything that follows
● Transformations are cumulative
● Primitive operations

– glLoadIdentity();
– glTranslate[fd](dx , dy , dz)
– glScale[fd](Sx , Sy , Sz)
– glRotate[fd](angle , Ux , Uy , Uz)

glTranslate[fd](dx , dy , dz);

● Move an object in three dimensions
● Allows you to easily produce multiple copies of

an object
● Always takes 3D coordinates (float or double)

glScale[fd](Sx , Sy , Sz)

● Change the scale along the axes
● Multiplicative factors

– |S|<1 shrink
– |S|>1 expand
– Negative values creates mirror image

● Allows you to easily create multiple copies of
the same type at different sizes

glRotate[fd](angle , Ux , Uy , Uz)

● Rotates around the origin and axis (Ux,Uy,Uz)
● Angle is measured in degrees
● The axis can be a primary axis (X,Y,Z) but may

be axis
● Allows you to create multiple copies of the

same object viewed from different sides, or to
view the scene from different positions

Temporary Transformations

● glPushMatrix()
– Saves the current transformation

● glPopMatrix()
– Resets the transformation to what it was when you

did the push
● Allows you to build complex transformations

and then get them back

Compound Transformations

● Rotate angle around the point (X,Y,Z) and axis
(Ux,Uy,Uz)
– glTranslated(-X,-Y,-Z)
– glRotated(angle,Ux,Uy,Uz)
– glTranslated(X,Y,Z)

● OpenGL does this intelligently

Projections

● Orthographic
– glOrtho(left,right,bottom,top,near,far)
– Same size regardless of distance
– Easiest to use

● Perspective
– glFrustrum(left,right,bottom,top,near,far)
– Closer objects are bigger
– gluPerspective(fov,aspect,Znear,Zfar)
– gluLookAt(Ex,Ey,Ez , Cx,Cy,Cz , Ux,Uy,Uz)

Text

● OpenGL provides only hooks for fonts
● Stroked fonts

– Lines and fills write the characters
● Bitmap (raster) fonts

– Characters are raster images
● Orientation, size, etc. treated just like any other

drawing elements

Text using GLUT

● glutBitmapCharacter(GLUT_SOMEFONT,ch)
– Single charcter
– Limited font selection

● glRasterPos3d(x,y,z)
– Sets position to write text in (x,y,z) coordinates

● glWindowPos2i(x,y)
– Sets position to write text in pixels coordinates

Registering Callbacks
● Display

– glutDisplayFunc() Draw the scene
– glutReshapeFunc() Window resized
– glutIdleFunc() Nothing more scheduled

● User input
– glutKeyboardFunc() Key pressed
– glutSpecialFunc() Special key pressed
– glutMouseFunc() Mouse button
– glutMotionFunc() Mouse motion

● Many more

Keyboard Input

● special(int key,int x,int y)
– Cursor keys GLUT_KEY_LEFT, GLUT_KEY_UP,...
– Function keys GLUT_KEY_Fx
– Basically anything not an ASCII key

● keyboard(char ch,int x,int y)
– Regular keystrokes

● (x,y) is the mouse position in pixels

Setting Modes

● glutInitDisplayMode
– Interfaces with the window manager to get the right

kind of window
● glEnable() & glDisable()

– Switches OpenGL into various modes
● GL_DEPTH_TEST
● GL_ALPHA_TEST
● GL_CULL_FACE
● GL_LIGHTING

– Different modes for different objects

Checking for Errors

● OpenGL fails silently
● Functions do not return an error code
● glGetError() must be called explicitly to check

for errors
● A black screen is a sure signal of an error

