

Advanced
Shadows
CSCI 4229/5229

Computer Graphics
Fall 2015

The Goal

● Realistic shadows
– Shadows of objects on the floor and walls
– Shadows of objects on each other
– Shadows of each object on itself (if concave)

● Important depth cues
– Relative positions of objects
– Relative sizes of objects

Shadow Volumes

● The volume corresponding to the shadow
cast by a facet of each object
– Potentially multiple shadow volumes per

object
– Shadow of the object is the combination of all

shadow volumes for the object

Shadow Volume Algorithm

● Count transitions in and out of shadow
volumes
– Increment of in, decrement for out
– Similar to polygon winding rule for in/out

● Lit areas has value of zero (initial value)

The Stencil Buffer
● Buffer of 1, 4, 8, 16, 24 or 32 bits (often 8)
● One value for each pixel
● Accessed indirectly via operations on color

buffer
● Can be used test as a stencil

– Pixels are only drawn where the stencil buffer
allows

● Exercised significantly by the shadow
volume algorithms

Stencil Buffer Bits (a bit dated)

OpenGL Implementation Stencil Bits
Most software implementations 8
3Dlabs Permedia II 1
SGI Indigo2 Extreme 4
SGI Octane MXI 8
ATI Rage 128 8
NVIDIA RIVA TNT 8
SGI Onyx2 InfiniteReality 1 or 8

● Sometimes 32 total bits for depth/stencil

Enabling the Stencil Buffer

● Need hardware support

– glutInitDisplayMode (.... | GLUT_STENCIL);
● Must be enabled explicitly

– glEnable(GL_STENCIL_TEST);
● Stencil operations only happen if there is both

hardware support and it is enabled

– Stencil tests always pass if not supported or not
enabled

– Test size with glGetIntegerv(GL_STENCIL_BITS,&k);

glStencilFunc(func,ref,mask)

● Decides how the stencil buffer effects drawing

– GL_ALWAYS, GL_NEVER fixed function
– GL_EQUAL, GL_LESS, GL_GREATER, GL_LEQUAL,

GL_GEQUAL, GL_NOTEQUAL compares masked
stencil and reference values

● If the test passes (is true) the pixel is drawn

– GL_LESS => Draw when ref&mask < buf&mask

glStencilOp(fail,Zfail,Zpass)

● Determines what happens to the stencil
buffer if
– fail: the stencil test fails
– Zfail: the Z-buffer test fails
– Zpass: the Z-buffer test passes

● Options:
– GL_KEEP no change
– GL_ZERO set to zero
– GL_REPLACE set to reference value
– GL_INCR, GL_DECR increment or decrement
– GL_INVERT bitwise inversion
– GL_INCR_WRAP, GLDEC_WRAP (OpenGL 1.4)

Z-Pass Algorithm

● Render scene with lights off
– All shadows and sets Z-buffer

● Make Z-buffer and color buffer read-only

● Render facets facing eye and pass depth test
– Increment stencil buffer, depth and color

unchanged
● Render facets opposite eye and pass depth test

– Decrement stencil buffer, depth and color
unchanged

● Make Z-buffer and color buffer read-write

● Render scene with lighting on and stencil=0

Z-pass Pros and Cons

● Works for objects of arbitrary shape

– Cast shadows on walls, other objects and itself
● Fast and has hardware support

– Does require 4 passes through scene
– Face culling cuts effort in half on shadow passes

● Does not always work

– Fails when eye is in the shadow
– Fails when shadow volume clipped by front

plane
– Hollow objects (like spout of teapot)

Fixing Z-Pass

● Start at the back instead of the front
● Officially known as the Z-Fail algorithm
● Sometimes called Carmacks' Reverse
● Fixes the problem when the eye is in the

shadow, but really just moves the
problem to the back

● Still fails if shadow volumes are clipped
by the back plane
– Finite Z buffer size can be a problem
– Fix by adjusting infinity adaptively

Z-Fail Algorithm

● Render scene with lights off
– All shadows and sets Z-buffer

● Make Z-buffer and color buffer read-only

● Render facets opposite eye and fail depth test
– Increment stencil buffer, depth and color

unchanged
● Render facets facing eye and fail depth test

– Decrement stencil buffer, depth and color
unchanged

● Make Z-buffer and color buffer read-write

● Render scene with lighting on and stencil=0

Other methods

● Z-pass generally several times faster than Z-
fail
– The front object can hide lots objects behind

● ZP+ corrects Z-pass failures
– Adds front cap to correct light/shadow count

● Shadow Mapping
– Requires hardware support to do efficiently
– Supported by vendor OpenGL extensions

Shadow Mapping
● Project with light as viewpoint

● Depth buffer from light

● Light/shadow determined just like visibility

– Objects in light foremost in depth buffer
– Objects in shadow depth obscured

● Requires second depth buffer

– Copy depth to texture
– Compare R to texture

● In OpenGL extensions

● Used in Toy Story etc.

Shadow Map Example

No Shadows

Light View

Light View Depth
``

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

