Drawing in 2D

CSCI 4229/5229 Computer Graphics Fall 2022

Coordinate Systems

- Cartesian coordinates
 - Most commonly used
 - Left or right handed
 - 2D is a trivial case in 3D
- Polar coordinates
 - Convenient in some instances
- Curvilinear Coordinates
 - Specialized applications

2D Cartesian Coordinate Systems

- World Coordinates
 - Xmin Xmax x Ymin Ymax
- Normalized Device Coordinates
 - 0-1 x 0-1 or 0-1 x 0-*r* or -1 to -1
 - may be isometric
 - Viewport Umin Umax x Vmin Vmax
- Device coordinates
 - pixels, plotter increments
 - origin may be top-left

Transformations

World to Normalized Device Coordinates

u = (x-Xmin)/(Xmax-Xmin)*(Umax-Umin) + Umin

v = (y-Ymin)/(Ymax-Ymin)*(Vmax-Vmin) + Vmin

Normalized Device to World Coordinates

x = (u-Umin)/(Umax-Umin)*(Xmax-Xmin) + Xmin

y = (v-Vmin)/(Vmax-Vmin)*(Ymax-Ymin) + Ymin

• (x,y) may be outside (Xmin-Xmax,Ymin-Ymax)

Vector Lines

- Line from (x_0, y_0) to (x_1, y_1)
- Explicit

$$-y = (x - x_0)^* (y_1 - y_0) / (x_1 - x_0) + y_0$$

$$-x = (y - y_0)^* (x_1 - x_0) / (y_1 - y_0) + x_0$$

• Parameteric

$$-x = (1-f)x_{0} + fx_{1}$$

-y = (1-f)y_{0} + fy_{1}
-f = 0 \Rightarrow (x_{0}, y_{0}); f = 1 \Rightarrow (x_{1}, y_{1})

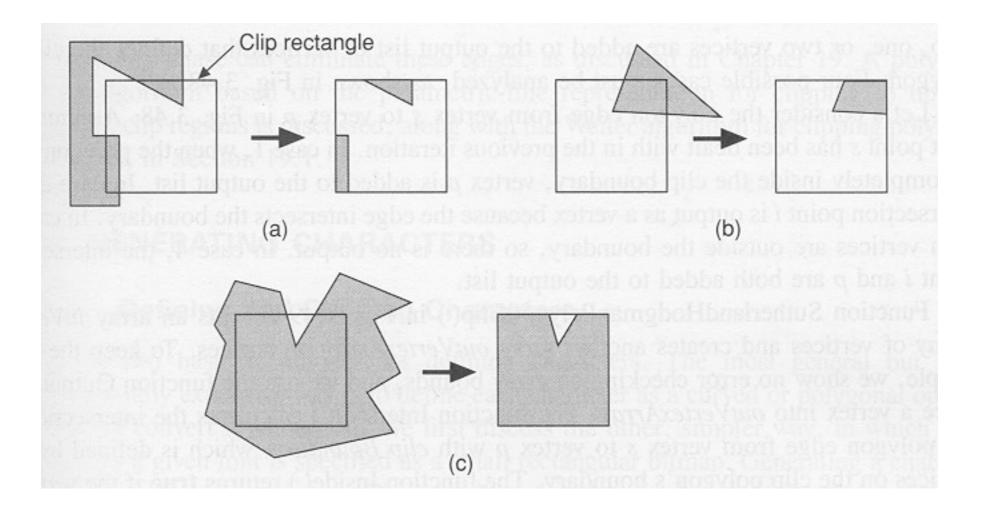
Vector Clipping

- Cohen-Sutherland Line Clipping
 - Determine region of start and end
 - Accept, reject or clip
- Parametric Line-Clipping Algorithm
 - Calculate parameter t
 - -0 < t < 1 requires clipping
- Sutherland-Hodgman Polygon Clipping
 - Clips edges of polygon
 - Successive clips to half planes
- OpenGL does this for you

Cohen-Sutherland Line Clipping

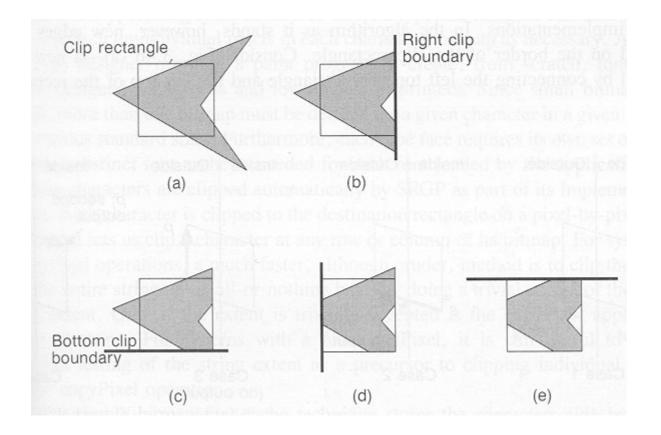
- Set bits to identify outside zones
- Trivial accept or reject
- Clip non-trivial cases
- Accept or reject

Parametric Line Clipping


- Cohen-Sutherland may require up to 4 clips
- Parameteric algorithm more efficient
 - Original Cyrus-Beck
 - Improved by Liang-Barsky
- Readily extends to 3D and irregular windows
- Basic equation for line from P₀ to P₁

$$t = (N \cdot [P_0 - P_E]) / (N \cdot [P_0 - P_1])$$

N is the outside normal


 $\rm P_{_E}$ is on the edge

Polygon Clipping Challenges

From Foley, van Dam Feiner & Hughes

Polygon Clipping Algorithm

From Foley, van Dam Feiner & Hughes