Homogeneous Coordinates

CSCI 4229/5229
Computer Graphics Fall 2022

Basic 2D Transformations

Translation:

$$
\begin{aligned}
x^{\prime} & =x+\delta x \\
y^{\prime} & =y+\delta y \\
\binom{x^{\prime}}{y^{\prime}} & =\binom{x}{y}+\binom{\delta x}{\delta y}
\end{aligned}
$$

Scaling:

$$
\begin{aligned}
x^{\prime} & =S_{x} x \\
y^{\prime} & =S_{y} y \\
\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

Rotation

$$
\begin{aligned}
x^{\prime} & =\cos \theta x-\sin \theta y \\
y^{\prime} & =\sin \theta x+\cos \theta y \\
\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

Compound Transformations

$$
\begin{array}{ll}
\text { Translation } & p^{\prime}=p+d \\
\text { Scaling } & p^{\prime}=S p \\
\text { Rotation } & p^{\prime}=R p
\end{array}
$$

Sequence of transformations

$$
\begin{aligned}
p^{\prime} & =S_{3} R_{3}\left(S_{2}\left(R_{2} R_{1} S_{1}\left(p+d_{1}\right)+d_{2}\right)+d_{3}\right) \\
& =M_{3}\left(M_{2}\left(M_{1}\left(p+d_{1}\right)+d_{2}\right)+d_{3}\right)
\end{aligned}
$$

Homogeneous Coordinates

- Define

$$
\begin{aligned}
& \binom{x}{y} \equiv\left(\begin{array}{c}
X \\
Y \\
W
\end{array}\right) \equiv\binom{X / W}{Y / W} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \equiv\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right) \equiv\left(\begin{array}{c}
X / W \\
Y / W \\
Z / W
\end{array}\right)
\end{aligned}
$$

2D Homogeneous Transformations

Translation:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & \delta x \\
0 & 1 & \delta y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
w
\end{array}\right)=\left(\begin{array}{c}
x+w \delta x \\
y+w \delta y \\
w
\end{array}\right) \equiv\binom{x / w+\delta x}{y / w+\delta y}
$$

Scaling:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
w
\end{array}\right)=\left(\begin{array}{c}
S_{x} x \\
S_{y} y \\
w
\end{array}\right) \equiv\binom{S_{x} x / w}{S_{y} y / w}
$$

Rotation

$$
\begin{aligned}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right) & =\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
w
\end{array}\right)=\left(\begin{array}{c}
\cos \theta x-\sin \theta y \\
\sin \theta x+\cos \theta y \\
w
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc}
{[\cos \theta x-\sin \theta} & y] / w \\
{[\sin \theta x+\cos \theta} & y] / w
\end{array}\right)
\end{aligned}
$$

Compound Homogeneous Transformations

Translation
$$
p^{\prime}=D p
$$
Scaling
$$
p^{\prime}=S p
$$
Rotation
$$
p^{\prime}=R p
$$

Sequence of transformations

$$
\begin{aligned}
p^{\prime} & =S_{3} R_{3} D_{3} S_{2} D_{2} R_{2} R_{1} S_{1} D_{1} p \\
& =M p
\end{aligned}
$$

3D Homogeneous Translation and Scaling

Translation:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & \delta x \\
0 & 1 & 0 & \delta y \\
0 & 0 & 1 & \delta z \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
$$

Scaling:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
$$

3D Homogeneous Rotation

Rotation around the z axis:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)
$$

Rotation around the x axis:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)
$$

Rotation around the y axis:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)
$$

General Homogeneous Rotation

Rotation around a unit vector (X, Y, Z) :

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1+(1-\cos \theta)\left(X^{2}-1\right) & -Z \sin \theta+(1-\cos \theta) X Y & Y \sin \theta+(1-\cos \theta) X Z & 0 \\
Z \sin \theta+(1-\cos \theta) X Y & 1+(1-\cos \theta)\left(Y^{2}-1\right) & -X \sin \theta+(1-\cos \theta) Y Z & 0 \\
-Y \sin \theta+(1-\cos \theta) X Z & X \sin \theta+(1-\cos \theta) Y Z & 1+(1-\cos \theta)\left(Z^{2}-1\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)
$$

Rotate x axis to unit vector $\left(X_{0}, Y_{0}, Z_{0}\right)$ and y axis to unit vector $\left(X_{1}, Y_{1}, Z_{1}\right)$:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
X_{0} & X_{1} & Y_{0} Z_{1}-Y_{1} Z_{0} & 0 \\
Y_{0} & Y_{1} & Z_{0} X_{1}-Z_{1} X_{0} & 0 \\
Z_{0} & Z_{1} & X_{0} Y_{1}-X_{1} Y_{0} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
$$

Vector Rotation by Construction

Rotate x axis to unit vector $\left(X_{0}, Y_{0}, Z_{0}\right)$ and y axis to unit vector $\left(X_{1}, Y_{1}, Z_{1}\right)$:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
X_{0} & X_{1} & Y_{0} Z_{1}-Y_{1} Z_{0} & 0 \\
Y_{0} & Y_{1} & Z_{0} X_{1}-Z_{1} X_{0} & 0 \\
Z_{0} & Z_{1} & X_{0} Y_{1}-X_{1} Y_{0} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
$$

First column by construction

$$
\left(\begin{array}{c}
X_{0} \\
Y_{0} \\
Z_{0} \\
w
\end{array}\right)=\left(\begin{array}{cccc}
X_{0} & * & * & 0 \\
Y_{0} & * & * & 0 \\
Z_{0} & * & * & 0 \\
0 & * & * & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
w
\end{array}\right)
$$

Second column by construction

$$
\left(\begin{array}{c}
X_{1} \\
Y_{1} \\
Z_{1} \\
w
\end{array}\right)=\left(\begin{array}{cccc}
* & X_{1} & * & 0 \\
* & Y_{1} & * & 0 \\
* & Z_{1} & * & 0 \\
* & 0 & * & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
0 \\
w
\end{array}\right)
$$

Rigid transformation requires third column to be the cross product.

3D Homogeneous Transformation

Transformation matrices will always be of the form

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
r_{x x} & r_{y x} & r_{z x} & t_{x} \\
r_{x y} & r_{y y} & r_{z y} & t_{y} \\
r_{x z} & r_{y z} & r_{z z} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
$$

- Note that translation, scaling and rotation or any combination of these three never changes the value of w
- There are transformations that do modify w

Order of calls in OpenGL

- What is the resulting $x^{\prime}=M_{1} M_{2} M_{3} x$ for
- gITranslate(1000,2000,3000);
- glRotate(90,0,0,1);
- gIScale(10,20,30);
- glVertex(1,0,0);
- Answer: $x^{\prime}=(1000,2010,3000)$

First Try

- Start with $(1,0,0)$
- glTranslate(1000,2000,3000);
$(1,0,0)+(1000,2000,3000)=$ (1001,2000,3000)
- glRotate(90,0,0,1);
$(1001,2000,3000)$-> $(-2000,1001,3000)$
- gIScale(10,20,30);
$(-2000,1001,3000)->(-20000,20020,90000)$
- WRONG:
- Correct answer: $x^{\prime}=(1000,2010,3000)$

Second Try

- Start with $(1,0,0)$
- gIScale(10,20,30);
(1,0,0) -> $(10,0,0)$
- glRotate(90,0,0,1);
$(10,0,0)$-> $(0,10,0)$
- glTranslate(1000,2000,3000);
$(0,10,0)+(1000,2000,3000)=$ (1000,2010,3000)
- Killer fact: OpenGL RIGHT multiplies, so read from glVertex backwards

OpenGL Transformation Matrices

- You can set the matrices explicitly in OpenGL
- glLoadMatrixd(double mat[16])
- gIMultMatrixd(double mat[16])
- Setting the matrix may be convenient when you calculate vectors instead of angles
- Killer fact:
- The matrix is stored in COLUMN major order

OpenGL 4 Transformations

- OpenGL $1 \& 2$ provides transformations as part of the API
- OpenGL 3 \& 4 provides transformations only in the compatibility profile
- Wants the user to generate transformations by other means
- Provides matrix \& vector operations, but user must set transformation matrices

Useful Vector Results

- $\mathbf{c}=\mathbf{a} \times \mathbf{b}$
- \mathbf{c} is perpendicular to the plane formed by a and \mathbf{b}
- \mathbf{c} is zero when \mathbf{a} and \mathbf{b} are parallel
- $\mathbf{c}=\mathbf{a} \times(\mathbf{b} \times \mathbf{a})$
- \mathbf{c} is perpendicular to a
- \mathbf{c} is in the plane formed by \mathbf{a} and \mathbf{b}
- \mathbf{c} is zero when \mathbf{a} and \mathbf{b} are parallel

