Polygons
 CSCI 4229/5229 Computer Graphics Fall 2022

Polygon Definitions

- A polygon is strictly a planar object
- Plane defined as $a x+b y+c z=1$
- Three distinct (x, y, z) points
- One (x, y, z) point and a normal vector
- Finite subset of plane defined by set of vertices
- Vertexes must be in the plane
- In OpenGL you can specify 3D vertices
- When vertexes are not in a plane, the results are implementation dependent

Convex vs. Concave

- Convex polygons: Given any two points a and \boldsymbol{b} in the polygon $\boldsymbol{c}=f \boldsymbol{a}+(1-f) \boldsymbol{b}$ is also inside the polygon for any f in $(0,1)$
- Concave polygons: Some c is outside the polygon
- Concave examples:

- OpenGL requires convex polygons

What is Inside?

Normals for Polygons

- Given 3 points in the plane P_{1}, P_{2} and P_{3}
- Normalize $\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)$
- Use any three distinct vertexes of the polygon not on a line
- True Gouraud shading
- Calculate normals for all polygons
- At common vertexes, average all the normals
- Interpolate across polygons
- OpenGL normals are set at vertexes

Scan Converting Polygons

- Draw horizontal lines to fill the polygon
- Pairs of points are interior
- Vertexes on a scanline is a problem
- Convex polygons are easy

Deciding the Polygon Extent

- (a) Bresenham Outline
- (b) Strictly Interior Outline

(a)

(b)
- Span extrema

Other pixels in the span

Edge Coherence

- Scan lines intersects near the last scanline
- Slivers may be just a line

OpenGL Polygons

- gIPolygonMode(type)
- GL_POINT draws vertexes
- GL_LINE draws outline
- GL_FILL fills polygon
- gIPolygonStipple(mask)
- 32x32 pixel (byte) mask
- glEnable(GL_POLYGON_STIPPLE)

