Parametric Surfaces CSCI 4229/5229 Computer Graphics Fall 2022

Bézier Surfaces

- In one dimension
$-C_{n}(t)=\sum_{i=0}{ }^{n} B_{i}^{n}(t) P_{i}, \quad t \in[0,1]$
- In two dimensions
$-S_{n, m}(t, r)=\sum_{i=0}^{n} B_{i}^{n}(t) \sum_{j=0}^{m} B_{j}^{m}(r) P_{i}, \quad t, r \in[0,1]$
- P_{i} are points in 3D or 4D
- Convex linear combination of points P_{i}
- Entire curve is in convex hull of points
- Surface passes through 4 corner points
- Curve is smooth and differentiable

2D Cubic Bézier Surface

- 16 Control points
- Corner points set surface
- Interior points stretches surface

Bicubic Bézier Patch

$$
\begin{aligned}
& P=(1-v)^{3} \quad\left((1-u)^{3} P_{00}+3(1-u)^{2} u P_{01}+3(1-u) u^{2} P_{02}+u^{3} P_{03}\right) \\
& +3(1-v)^{2} v\left((1-u)^{3} P_{10}+3(1-u)^{2} u P_{11}+3(1-u) u^{2} P_{12}+u^{3} P_{13}\right) \\
& +3(1-v) v^{2}\left((1-u)^{3} P_{20}+3(1-u)^{2} u P_{21}+3(1-u) u^{2} P_{22}+u^{3} P_{23}\right) \\
& +\quad v^{3} \quad\left((1-u)^{3} P_{30}+3(1-u)^{2} u P_{31}+3(1-u) u^{2} P_{32}+u^{3} P_{33}\right) \\
& =(1-u)^{3} \quad\left((1-v)^{3} P_{00}+3(1-v)^{2} v P_{10}+3(1-v) v^{2} P_{20}+v^{3} P_{30}\right) \\
& +3(1-u)^{2} u\left((1-v)^{3} P_{01}+3(1-v)^{2} v P_{11}+3(1-v) v^{2} P_{21}+v^{3} P_{31}\right) \\
& +3(1-u) u^{2}\left((1-v)^{3} P_{02}+3(1-v)^{2} v P_{12}+3(1-v) v^{2} P_{22}+v^{3} P_{32}\right) \\
& +\quad u^{3} \quad\left((1-v)^{3} P_{03}+3(1-v)^{2} v P_{13}+3(1-v) v^{2} P_{23}+v^{3} P_{33}\right)
\end{aligned}
$$

Bicubic Bézier Patch Normal

$$
\left.\begin{array}{rlclllll}
\frac{\partial P}{\partial u} & = & -3(1-u)^{2} & \left((1-v)^{3} P_{00}\right. & +3(1-v)^{2} v P_{10} & +3(1-v) v^{2} P_{20} & \left.+v^{3} P_{30}\right) \\
& +3(1-3 u)(1-u) & \left((1-v)^{3} P_{01}\right. & +3(1-v)^{2} v P_{11} & +3(1-v) v^{2} P_{21} & \left.+v^{3} P_{31}\right)
\end{array}\right)
$$

Surfaces in OpenGL

- Two-dimensional Evaluators
- Can be used to generate vertexes, normals, colors and textures
- Curve defined analytically using Bezier surfaces
- Evaluated at discrete points and rendered using polygons

Surfaces in OpenGL

- glEnable()
- Enables types of data to generate
- GL_AUTO_NORMAL generates normals for you
- glMap2d()
- Defines control points and domain
- glEvalCoord2d()
- Generates a data point
- glMapGrid2d() \& glEvalMesh2()
- Generates a series of data points
glMap2d(type,Umin,Umax,Ustride,Uorder, Vmin,Vmax,Vstride,Vorder,points)
- type of data to generate
- GL_MAP1_VERTEX_[34]
- GL_MAP1_NORMAL
- GL_MAP1_COLOR_4
- GL_MAP1_TEXTURE_COORD_[1-4]
- Umin\&Umax and Vmin\&Vmax are limits(often 0\&1)
- Ustride is the number of values in data $(3,4)$
- Vstride is the number of values in a row of data
- Uorder \& Vorder is the order of the curve (4=cubic)
- points is the array of data points (16 for bi-cubic)
- Remember to also call glEnable()

glEvalCoord2d(u,v)

- Generate one vertex for each gIMap2d() type currently active (e.g. texture, normal, vertex)
- To generate the whole surface, loop over quads and call glEvalCoord2d() once for each vertex
- Exercise entire parameter space
- u from Umin to Umax (0 to 1)
- v from Vmin to Vmax (0 to 1)

Generating a complete surface

- glMapGrid2d(N, U1, U2, M , V1, V2)
- glEvalMesh2(mode, N1, N2, M1, M2)
- This is equivalent to

```
    for (j=M1;j<M2;j++)
```

\{
glBegin(GL_QUAD_STRIP); for ($\mathrm{i}=\mathrm{N} 1 ; \mathrm{i}<=\mathrm{N} 2 ; \mathrm{i}++$)
\{
glEvalCoord1(U1+i*(U2-U1)/N, V1+j*(V2-V1)/M); glEvalCoord1(U1+i*(U2-U1)/N , V1+(j+1)*(V2-V1)/M); \} glEnd();

The Utah Teapot

- Generated by Martin Newell in 1975
- 32 Patches specified as Bezier surfaces
- 10 Base patches with reflections
- 126 control points
- Complex shape
- Hole in handle
- Hollow spout
- Non-convex
- Can cast shadows on itself

The Utah Teapot: Then and Now

