Drawing in 3D Projections

CSCI 4229/5229
Computer Graphics Fall 2023

Types of Projections

- Parallel Projections
- Orthogonal, isometric, ...
- Size does not diminish with distance
- Perspective
- Realistic based on an observer's point of view
- Nearer bigger, farther smaller
- One or more vanishing points

Taxonomy of Projections

Egyptian Tomb Painting

Annunciation Leonardo da Vinci (1472)

Waterfall M.C. Escher (1961)

OpenGL Transformation Pipeline

Parallel Projection

- Apply rotation matrix to map direction of projection to Z axis and up to Y axis
- Scale to canonical volume

From: OpenGL Red Book

glOrtho $\left(x_{\text {min }^{\prime}} x_{\max } y_{\text {min }^{\prime}} y_{\text {max }^{\prime}} z_{\text {min }^{\prime}} z_{\text {max }}\right)$

glOrtho Projection Matrix

$$
\left(\begin{array}{cccc}
\frac{2}{x_{\max }-x_{\min }} & 0 & 0 & -\frac{x_{\max }+x_{\min }}{x_{\max }-x_{\min }} \\
0 & \frac{2}{y_{\max }-y_{\min }} & 0 & -\frac{y_{\max } y_{\min }}{y_{\max }-y_{\min }} \\
0 & 0 & \frac{-2}{z_{\max }-z_{\min }} & \frac{z_{\max }+z_{\min }}{z_{\max }-z_{\min }} \\
0 & 0 & 1
\end{array}\right)
$$

Perspective Transformation

- Apply rotation matrix to map eye position to center of scene to negative Z and up to Y axes
- Scale (x, y) inversely proportional to distance
- Scale to canonical volume

Perspective Transformation

Similar triangles: $y^{\prime} / z^{\prime}=y / z$, so $y^{\prime}=y / z z^{\prime}$ Let $y_{\max }=1(N D C), \tan \theta=y_{\max } / z^{\prime}, \quad z^{\prime}=\cot \theta$

$$
y^{\prime}=\cot \theta y / z
$$

Homogeneous Perspective Multiply

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\frac{\cot \theta}{\text { aspect }} & 0 & 0 & 0 \\
0 & \cot \theta & 0 & 0 \\
0 & 0 & \frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} & \frac{2 z_{\text {far }} z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) \\
& =\left(\begin{array}{cl}
\frac{\cot \theta}{a s p e c t} & x \\
\cot \theta & y \\
\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} z+\frac{2 z_{\text {far }} z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} \\
-z
\end{array}\right) \\
& \equiv\left(\begin{array}{c}
\frac{\cot \theta}{a \operatorname{spect} \frac{x}{z}} \\
\cot \theta \frac{y}{z} \\
\frac{-2 z_{\text {far }} z_{\text {near }}}{z\left(z_{\text {far }}-z_{\text {near }}\right)}-\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}}
\end{array}\right)
\end{aligned}
$$

gluPerspective(fovy,aspect,Znear,Zfar)

- fovy is the angle in the up/down direction
- aspect is is the horizontal to vertical ratio
- Znear is the distance to the near clipping plane
- Killer fact Znear > 0
- Zfar is the distance to the far clipping plane
- Zfar > Znear
- Zfar-Znear determines Z resolution since the Z buffer has finite precision
- $\log _{2}$ (Zfar/Znear) bits lost

gluPerspective(fovy,aspect,Znear,Zfar)

Let $\theta=\mathrm{fovy} / 2$

gluPerspective Projection Matrix

$$
\left(\begin{array}{cccc}
\frac{\cot \theta}{\text { aspect }} & 0 & 0 & 0 \\
0 & \cot \theta & 0 & 0 \\
0 & 0 & -\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} & \frac{2 z_{\text {far }} z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} \\
0 & 0 & 0
\end{array}\right)
$$

gluLookAt $\left(E_{x^{\prime}} E_{y^{\prime}} E_{z}, C_{x^{\prime}} C_{y^{\prime}} C_{z}, U_{x^{\prime}} U_{y^{\prime}} U_{z}\right)$

- $\left(E_{x^{\prime}} E_{y^{\prime}} E_{z}\right)$ is the eye position
- $\left(C_{x^{\prime}} C_{y^{\prime}} C_{z}\right)$ is the position you look at
- $\left(U_{x^{\prime}} U_{y^{\prime}} U_{z}\right)$ is the up direction
- C-E determines the distance in the Z direction
- The Z distance to each object (from E) determines the reduction in the (x, y) direction

gluLookAt $\left(E_{x^{\prime}} E_{y^{\prime}} E_{z}, C_{x^{\prime}} C_{y^{\prime}} C_{z}, U_{x^{\prime}} U_{y^{\prime}} U_{z}\right)$

Forward $\quad \mathbf{F}=\mathbf{C}-\mathbf{E}$
Sideways $\quad \mathbf{S}=\mathbf{F} \times \mathbf{U}$
Up $\quad \mathbf{U}=\mathbf{S} \times \mathbf{F}$

$$
\begin{aligned}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right) & =\left(\begin{array}{cccc}
S_{x} & U_{x} & -F_{x} & 0 \\
S_{y} & U_{y} & -F_{y} & 0 \\
S_{z} & U_{z} & -F_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -E_{x} \\
0 & 1 & 0 & -E_{y} \\
0 & 0 & 1 & -E_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \\
& =\left(\begin{array}{cccc}
S_{x} & U_{x} & -F_{x} & -E_{x} S_{x}-E_{y} U_{x}+E_{z} F_{x} \\
S_{y} & U_{y} & -F_{y} & -E_{x} S_{y}-E_{y} U_{y}+E_{z} F_{y} \\
S_{z} & U_{z} & -F_{z} & -E_{x} S_{z}-E_{y} U_{z}+E_{z} F_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
\end{aligned}
$$

(\mathbf{F} and \mathbf{U} must be normalized)

First Person Navigation

- Decide where you are $\left(E_{x^{\prime}}, E_{y^{\prime}} E_{z}\right)$
- Decide which way you are looking

$$
-\left(C_{x^{\prime}} C_{y^{\prime}} C_{z}\right)=\left(E_{x^{\prime}} E_{y^{\prime}} E_{z}\right)+\left(d_{x^{\prime}} d_{y^{\prime}} d_{z}\right)
$$

- Decide up, e.g. $(0,0,1)$
- Move forward to new position

$$
-\left(E_{x^{\prime}} E_{y^{\prime}} E_{z}\right)+=d t^{*}\left(d_{x^{\prime}} d_{y^{\prime}} d_{z}\right)
$$

- Turn left and right using angle

$$
-\left(d_{x^{\prime}} d_{y^{\prime}} d_{z}\right)=(\cos \theta, \sin \theta, 0)
$$

