

CSCI 4830/7000

Advanced
Computer

 Graphics
Spring 2009

Instructor

● Willem A (Vlakkies) Schreüder
● Email: willem@prinmath.com

– Begin subject with 4830 or 7000
– Resend email not answered promptly

● Office Hours:
– Before and after Class
– By appointment

● Weekday Contact Hours: 6:30am - 9:00pm

mailto:willem@prinmath.com

Course Objectives
● Explore advanced topics in Computer Graphics

– Pipeline Programming (Shaders)
– Ray Tracing and other advanced

rendering techniques
– Special techniques

● Shadows
● Reflections
● Particle systems
● Interaction

● Assignments: Practical OpenGL
– Building useful applications

Course Organization and Grading

● Class (50% grade)
– First hour: Three 20 minute presentations

● Weekly homework assignments
● Volunteers and/or round robin

– Second hour: Introduction of next week's topic
● Semester project (50% grade)

– Build a significant application in OpenGL
– 20 minute presentation last two class periods

● No formal tests or final

Assumptions

● You need to be fluent in C
– Examples are in C (rarely C++)
– You can do assignments in any language

● I may need help getting it to work on my system

● You need to be comfortable with OpenGL
– CSCI 4229/5229 or equivalent
– You need a working OpenGL environment

Grading
● Satisfactory complete all assignments => A

– The goal is to impress your friends
● Assignments must be submitted on time unless

prior arrangements are made
– Due before next class

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with appropriate attribution is permitted

● Class attendance HIGHLY encouraged

Text

● Advanced Graphics Programming Using
OpenGL
– Tom McReynolds and David Blythe
– Not required but a good reference
– Does not cover all the topics

● OpenGL Shading Language (2ed)
– Randi J. Rost
– “ OpenGL Orange Book”
– Chapters 6 onward discusses Shaders

Other Texts

● OpenGL Programming Guide (5ed)
– Shreiner, Woo, Neider & Davis
– “ OpenGL Red Book”
– Download previous editions as PDF

● OpenGL SuperBible: Comprehensive Tutorial
and Reference (4ed)
– Wright, Lipchak & Haemel
– Good all-round theory and applications

OpenGL Resources
● www.google.com

– Need I say more?
● www.opengl.org

– Code and tutorials
● nehe.gamedev.net

www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229

Assignment 0
● Due: Friday Jan 16 by 9pm
● Sign up with moodle.cs.colorado.edu

– Enrollment key: 48307000
– A picture will help me learn your names

● Submit
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran and Perl
● Outside interests

– Aviation
– Amateur radio (voice and digital)

How to get started
● Make sure you have a working OpenGL

environment
– Compile and run examples from CSCI [45]229

● Make sure advanced examples work
– Windows may need GLEW
– Linux/nVidia may need driver+library from nVidia
– OS/X may need Fink compiler

OpenGL Extension Wrangler (GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or OpenGl
version at run time
– Crashes if unsupported features are used

● Use only if you have to

Assignment 1
● Due: Thursday Janary 22, 2009 before class
● Alternate OpenGL environments

– GLUT is an easy to use and widely supported
environment for running OpenGL

● Created for the Red Book
● Used by most OpenGL texts

– Investigate alternative environments and compare it
to GLUT, for example

● Qt (Cross platform C++ application framework)
● Simple DirectMedia Layer (SDL)

– Write a simple visualizer of the Lorenz attractor

Assignment 2
● Due: Thursday January 29, 2009
● Model Loader

– There are lots of programs for generating three
dimensional models, (e.g. Blender, Maya) that can
export models in various formats (obj, 3ds, pye, ...)

– Premade models are available for complex objects
● Write a loader to load a complex model and

display it using OpenGL

Project
● Should be a program with a significant graphics

component
– Something useful in your research/work?
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 5 (earlier is better)
– Review: Thursday April 2 (progress report)
– Final: Monday April 27

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under CentOS 5.2
– Set #ifdef so I can compile and run it

● Submit using moodle.cs.colorado.edu
– ZIP or TAR (no RAR)
– Name executables hw1, hw2, ...
– Create a makefile so I can do make clean;make
– Set window title to Assignment X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if requested

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it in CSEL or a Linux box
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...

Class Presentations

● If have a special interest in the topic and have
something special to contribute VOLUNTEER

● If by Sunday morning there are not three
volunteers, I will appoint volunteers on a round
robin basis (in order by MD5 of names)
– You can trade places if you can talk somebody into

or out of a slot
● Everybody must present at least twice, but you

can do more if you want
● Popular topics may have more presenters

What to Present

● Should be (mostly) the assigned topic
– Feel free to push the envelope

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting

How to Present

● 20 minutes can be an eternity or over in a wink
– Plan your time (practice a bit)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions

How to Listen

● If you don't understand, ask
– Helps the presenter understand what's new to you

● If you disagree, say so
– Maybe the presenter misspoke or has an different

opinion worth discussing
● Be nice – you may be next!

Parallel Flight Simulator Project
● Consider joining a project with many members

– Each member has a specific subtask
● World visualization
● Special effects
● Flight dynamics
● Multi-function displays (instruments)
● Networking
● Flight controls
● Sound

– Rotating project manager
● Responsible for managing the project for a week
● Provide concise report of what was done the last week
● Lay out a plan for what should be done the next week

● Somewhat like a real software project
– I will be the client

Review of OpenGL
● OpenGL is an API or library

– GLU for some utilities and convenience functions
– GLUT or other library for OS interface
– Just gets a picture inside an OS supplied window

● OpenGL uses a state machine
– Function calls set attributes that apply to

subsequent objects
– Objects are built from primitive elements

● Vertexes define points in 3D space
● Build lines and polygons from vertexes
● Build 3D objects from polygons (skin only)

Vertex Attributes
● Position (x,y,z,w)

– glVertex
● Color (R,G,B,)

– glColor

● Normal (x
n
,y

n
,z

n
,w

n
)

– glNormal
● Texture Coordinates (s,t,r,q)

– glTexture
– glMultiTex

● User defined attributes

Points

● One at each vertex
– glBegin(GL_POINTS)

● Point size
– glPointSize()

Lines

● Built from vertexes
– glBegin(GL_LINES)
– glBegin(GL_LINE_STRIP)
– glBegin(GL_LINE_LOOP)

● Line pattern
– glLineStipple()

● Line width
– glLineWidth()

Polygons

● Build from vertexes
– glBegin(GL_POLYGON)
– glBegin(GL_TRIANGLES)
– glBegin(GL_QUADS)
– many more

● Must be planar
● Fill pattern

– glPolygonStipple()
– glShadeModel()

OpenGL Transformation Pipeline

Transformations
● glMatrixMode()
● Primitive transforms

– glTranslate
– glScaled
– glRotated

● Utilities
– gluPerspective()
– gluLookat()

● Direct manipulation (homogeneous coordinates)
– glMultMatrix

Modes

● glEnable(), glDisable()
– GL_DEPTH_TEST
– GL_CULL_FACE
– GL_LIGHTING
– GL_TEXTURE_2D
– GL_SHADOWS

Blinn-Phong Lighting

● Enable GL_LIGHTING & GL_LIGHTx
● glLightXXX

– Ambient, Diffuse, Specular
– Position, Direction, Spot Angle
– Local/Global, One/Two sided

● glMaterialXXX
– Emission, Ambient, Diffuse, Specular, Shininess

● glNormal

Textures

● glEnable(GL_TEXTURE_xD)
● glGenTexture()
● glBindTexture()
● glTexImage2D()

– you need to load the image yourself
● glTexParameter()
● glTexEnv()

Blending and Transparency
● glEnable(GL_BLEND)
● glBendFunc(source,destination)

– GL_ZERO
– GL_ONE
– GL_DST_COLOR
– GL_ONE_MINUS_DST_COLOR
– GL_SRC_ALPHA
– GL_ONE_MINUS_SRC_COLOR
– GL_DST_ALPHA
– GL_ONE_MINUS_DST_ALPHA
– GL_SRC_ALPHA_SATURATE

● Anti-aliasing

Other Features

● Display Lists
● Polygon Offset
● Fog
● Bezier curves and surfaces
● Masking

– Color, Z-buffer, etc can be made read-only
– Stencil buffer

● Many more..

Interfacing with the OS
● Displaying the image

– Request window features
– Redraw window
– Window resized

● User interaction
– Keyboard input
– Mouse input

● Other OS functions
– Elapsed time
– Sound

GLUT (OpenGL Utility Toolkit)

● Used by many textbooks
– Implementations for Unix, Windows, MacOS, ...

● Hides OS specific complexity
– Create window and request properties
– Callback functions to process events

● Display
● Keyboard
● Mouse

– glutGet to access time, dimensions, ...
● Limited support for menus

Alternatives to GLUT

● Simple Directmedia Layer
– Similar to GLUT
– Add sound, menus, etc..

● Nokia/Trolltech Qt
– Cross Platform C++ Application Framework
– Comprehensive sets of widgets
– OpenGL window is a widget

● Many others

