Image Processing CSCI 4830/7000 Advanced Computer Graphics Spring 2010

Types of Image Processing

- Sample texture to generate image
 - Texture can be read from file
 - Generate texture on pass 1, process on pass 2
- Combing values from different textures
 - Differencing/merging images
- Combining surrounding values from one texture
 - Sharpen, blur, erosion, dilation,
 - Edge detection
 - Anti-aliasing

Image Processing by Shader

- Pixel value based on the pixels in the vicinity
 - Weighted average of group of pixels
 - Sum of weights should be one
 - Weights may be negative
 - Edge detection
 - Sum of weights should be zero
 - Some weights must be negative
- Fragment processing can get values from a texture by sampling
 - Need the image in a texture
 - For interactive graphics, need image -> texture

OpenGL Implementation

- Draw the scene
- Copy scene to texture
 - glCopyTexImage2D
 - Set pixel spacing
- Apply processing to texture
 - Identity projection
 - Draw quad size of window
 - Sample pixel from texture
- Can do multiple iterations

Framebuffer Implementation

- Procedure remains the same
 - Draw the scene to texture framebuffer
 - Apply processing to (framebuffer) texture
- Very efficient
 - No need to move buffers to and from video card
- Simple to implement
 - Allocate and size buffer
 - Switch destination with glBindFrameBuffer

Image Filters

- Sharpen (sum of weights=1)
 - -1 -1 -1 -1 9 -1 -1 -1 -1
- Blur (sum of weights=1)
 - 1 2 1 2 1 2 / 13
 - 1 2 1
- Erosion (minimum)
- Dilation (maximum)

Edge Detection

- Laplacian (sum of weights=0)
 - -1 -1 -1 -1 8 -1 -1 -1 -1
- Prewitt $\sqrt{H^2+V^2}$ -1 -1 -1 1 0 -1 $H = 0 \quad 0 \quad 0 \quad V = 1 \quad 0 \quad -1$ 1 1 1 1 0 -1 • Sobel $\sqrt{H^2+V^2}$ -1 -2 -1 1 0 -1 $H = 0 \quad 0 \quad 0 \quad V = 2 \quad 0 \quad -2$ 1 0 1 2 1 -1