Ray Tracing
CSC14830/7000

Advanced Computer Graphics
Spring 2010



What is it?

* Method for rendering
a scene using the
concept of optical
rays bouncing off
objects

— More realistic
- Reflections
- Shadows




How does it work?

Figure 1. The ray-tracing process.



Sources

Ray Tracing from the Ground Up

- Kevin Suffern

- Excellent tutorial

- Some working examples

- http://www.raytracegroundup.com/

nVidia
Intel
Van Der Ploeg thesis



Interactive Ray Tracing

* True ray tracing is VERY compute intensive

* Global problem —scene complexity adds effort
* Generally there is no upper limit to computation
* Solutions are generally software based

- Dedicated hardware may be near
- http://www.caustic.com/
- OpenRL




nVidia Quadra Plex
1920x1024 @ 30fps




nVidia Quadra Plex
1920x1024 @ 30fps




How is it Done?

* Scene Description Language

- Defines objects in scene

 Geometry and properties
- Lights
— Eye position

* Determine color of individual pixels using ray
tracing algoritms

- Very hard to do real time



How ray tracing works

* Define scene and view
- objects
- lights
- eye

* For each pixel

- Shoot ray from pixel

- Find nearest hit

- Use object properties and
ights to calculate color, or
set to black if no hits




True Global Ray Tracing

* Light can bounce many times

— Color changes at each bounce
- Each bounce attenuates light
- Light scatters in complex ways
— Objects block light

* This simple scene took
2 CPU years to render

— Cornell Box
— Area light and three boxes



Efficiency and Complexity

* Most ray tracers written in C++

- Object Oriented paradigm for objects, rays, colors
- Good efficiency/readability trade-off

* Efficiency is a HUGE deal
- Pushing the envelope of hardware
- Algorithm is global by definition

* Recursion and complexity

- Need clean interface on objects



What is a Ray?

*p=0+1td

surface

° Type S Of rays light source ight source 3y

el ke
s B 1 - illumination i \\
_ . N direet i
Prl m ary rays direct \ﬂ\ \Indirem illumination
illumination —

- Secondary rays

e
y (@) (b)
. Figure 14.2. (a) Direct illumination hits the surface of an object directly from a light source;
- Ll g ht rays (b) indirect illumination hits a surface after being reflected from at least one other surface.

* Rays are one directional



Intersections

t<0p t=0

® = ray origin
r—-D ® = hit point with t > 0
s @ = hit point with t < 0
view plane

(a) (b)

Figure 3.4. (a) Rays and their intersections with spheres; (b) ray-traced image of the spheres,



Intersecting a Sphere

* Simplest 3D object
zero intersections; d < 0
ray 2 —>» == > one intersection: d =0
- Center P
ray 3 &—p—=8 o - two intersections: d > 0

- Radius

Figure 3.7. Ray-sphere intersections.
L Smooth normal y-sphere intersectio

ray 1 &—»

L i

* |ntersections

— none jpey

ray 1 ----o7———o -#—3p—> zero intersections with t > 0

ray 2 e @—>» > zero intersections with t > 0
B Once ray 3 -o-——-8—>»—8- » one intersection with t >0

ray 4 ---:—.'I >— » one intersection with { > 0

* tangent B

Figure 3.8. Further ray-sphere intersections.

* internal
- twice



Implicit Surfaces

* General
- f(x,y,z) =0

* Plane: Point a and Normal n
- (p-a)en=0

* Sphere
- (p-a)e(p-a) - r=0

* Triangle

- Limit plane



