Ray Tracing:

Implementation

CSCl1 4830/7000
Advanced Computer Graphics
Spring 2010

How does it work?

Figure 1. The ray-tracing process.

How ray tracing works

* Define scene and view
- objects
- lights
- eye

* For each pixel

- Shoot ray from pixel

- Find nearest hit

- Use object properties and
ights to calculate color, or
set to black if no hits

Interaction between
Lights and Objects

W

f

light source light source

|

direct ; indirect illumination
illumination

(a) (b)

Figure 14.2. (a) Direct illumination hits the surface of an object directly from a light source;
(b) indirect illumination hits a surface after being reflected from at least one other surface.

Bouncing Rays from Surfaces

)
y

2 %

(&) (b)

Figure 14.4. (a) Mirror reflection can be modeled by tracing a single reflected ray at each
hit point; (b) modeling glossy specular light transport between surfaces requires many rays
to be traced per pixel; (c) modeling perfect diffuse light transport between surfaces also
requires many rays to be traced per pixel.

Light Reflection

e Diffuse (Lambertian) - &L
. incident light "_ P A 44
reflection e A/

//7
\\\'.I || J_/’
.{ - g//___.

- Intensity Factor NeL Y

perfect diffuse reflection

Figure 13.6. Light being scattered from
a perfectly diffuse surface.

» Specular reflection
- R=2(N-DN-L 0 A g)

reflection ” -0

- Intensity Factor « \\

perfect specular reflection glossy specular reflection
(a) (B]

Figure 14.3. (a) Perfect specular reflection; (b) glossy specular reflection,

Specular Reflected Light

* Assume the ray (from the eye) hits objects
1,2,3,... with reflection coefficients O, 00505

» Specular Reflection Color
X (C + (C +x (C +...)))

1

= X C + alo(ZC2+(xlo<20(3C3+

* Since light is assumed to be linearly additive,
just keep track of « and add light along
successive bounces of the ray

* White specular means « can be a scalar

Simple Ray Tracing Algorithm
* |nitialize ray (O,d)
- color = black
- coef=1
* Find closest intersection P
- color += coef*ambient*material
- if not in shadow color += coef*NeL*diffuse*material
- coef *= reflectivity
- redirect ray from P to d -2(d*N)N

* Stop when no intersection, or coef<<1, or
maximum number of bounces

Ex 49: Three Ray Traced Spheres

* Simple scene

- Three highly reflective spheres
- Two white lights (one close, one far)

* Support classes

- Vec3, Mat3, Color
* Base classes

- Ray, Material, Light
* Object classes

- Sphere

Implementation Notes

* Written in very bad C++

- KISS
— No object abstraction

* Use STL vector<> class for lists
* Calculate array of pixel values width x height

- View by transforming pixel location
- Copy to screen using glDrawPixels

* All calculations in global coordinates

- Preprocess scene as needed

Building a real Ray Tracer in C++

* Base classes
- Ray
- Object
- Light
- Material
* Derived Object Classes

- Sphere

- Cube

- Triangle

- Triangle Mesh

Object Class

* Type of object

- Implicit Surface

* Sphere
* Torus, cylinder, cube, ...

- Compound objects

* Triangular mesh

* Intersection with a ray
- Point of intersection
- Normal
- Textures, etc

Virtual Methods

* Base class
~ hit
- sample
- color

* Each object class overrides the base class

Intersecting a Complex Object

* Defining a complex object

- Triangle mesh on vertexes
- Gouraud shading

* Expensive to ray trace

and a bounding box.

- Test every ray against every triangle in the object
- Test bounding box of entire object

* |ntersections

- Plane
— Axis-aligned box
— Generic triangle

Perspective Ray Tracing

Figure 8.14. Set-up for axis-aligned perspective viewing with the eye point and two rays
going through pixel centers.

Stereoscopy

left-eye view right-eye view

