
   

Ray Tracing: 
Implementation

CSCI 4830/7000
Advanced Computer Graphics

Spring 2010



   

How does it work?



   

How ray tracing works
● Define scene and view

– objects
– lights
– eye

● For each pixel
– Shoot ray from pixel 
– Find nearest hit
– Use object properties and 

lights to calculate color, or 
set to black if no hits

`



   

Interaction between
Lights and Objects



   

Bouncing Rays from Surfaces



   

Light Reflection
● Diffuse (Lambertian) 

reflection
– Intensity Factor NL

● Specular reflection
– R = 2(NL)N-L
– Intensity Factor 



   

Specular Reflected Light

● Assume the ray (from the eye) hits objects 
1,2,3,... with reflection coefficients 

1
,

2
,

3
,...

● Specular Reflection Color


1
(C

1 
+ 

2
(C

2
+

3
(C

3
+...)))

= 
1
C

1 
+ 

1


2
C

2
+

1


2


3
C

3
+...

● Since light is assumed to be linearly additive, 
just keep track of  and add light along 
successive bounces of the ray

● White specular means  can be a scalar



   

Simple Ray Tracing Algorithm
● Initialize ray (O,d)

– color = black
– coef = 1

● Find closest intersection P
– color += coef*ambient*material
– if not in shadow color += coef*N• L*diffuse*material
– coef *= reflectivity
– redirect ray from P to d –  2( d• N)N

● Stop when no intersection, or coef<<1, or 
maximum number of bounces



   

Ex 49:  Three Ray Traced Spheres

● Simple scene
– Three highly reflective spheres
– Two white lights (one close, one far)

● Support classes
– Vec3, Mat3, Color

● Base classes
– Ray, Material, Light

● Object classes
– Sphere



   

Implementation Notes

● Written in very bad C++
– KISS
– No object abstraction

● Use STL vector<> class for lists
● Calculate array of pixel values width x height

– View by transforming pixel location
– Copy to screen using glDrawPixels

● All calculations in global coordinates
– Preprocess scene as needed



   

Building a real Ray Tracer in C++
● Base classes

– Ray
– Object
– Light
– Material

● Derived Object Classes
– Sphere
– Cube
– Triangle
– Triangle Mesh



   

Object Class

● Type of object
– Implicit Surface

● Sphere
● Torus, cylinder, cube, ...

– Compound objects
● Triangular mesh

● Intersection with a ray
– Point of intersection
– Normal
– Textures, etc



   

Virtual Methods

● Base class
– hit
– sample
– color

● Each object class overrides the base class



   

Intersecting a Complex Object

● Defining a complex object
– Triangle mesh on vertexes
– Gouraud shading

● Expensive to ray trace
– Test every ray against every triangle in the object
– Test bounding box of entire object

● Intersections
– Plane
– Axis-aligned box
– Generic triangle



   

Perspective Ray Tracing



   

Stereoscopy


