
   

OpenGL ES
CSCI 4830/7000

Advanced Computer Graphics
Spring 2012



   

OpenGL ES

● OpenGL for Embedded Systems
– Phones
– Game consoles
– Appliances
– Avionics
– Subsystems (e.g. browsers)
– …

● Cross-platform, open, standard



   



   

What is it?

● OpenGL adapted for Embedded Systems
– Less capable hardware

● Limited memory
● Limited processing power
● Lower clock frequencies

– Lower power consumption
● Less heat dissipation

● Same familiar API
– Subset of full OpenGL API
– Powerful 3D graphics in your pocket



   

OpenGL Advantages

● Standard and Royalty Free
● Small footprint
● Low power consumption
● Seamless hardware acceleration
● Extensible and evolving
● Easy to use
● Well documented 



   

Current Applications

● Mobile devices
– iPhone/iPod/iPad
– Android

● WebGL
– Chrome, Firefox, Safari, Opera
– Explorer using plugin

● Embeded systems
– 3D displays



   

OpenGL ES 1.1

● Defined relative to OpenGL 1.5
● Fixed pipeline (no shaders)
● Removes some functionality

– No glBegin() … glEnd()
● Replaced with glDrawArrays() & glDrawElements()

– No GL_QUAD or GL_POLYGON
– No display lists

● Still provides lighting, textures, etc.



   

OpenGL ES 2.0

● Not backwards compatible with ES 1.1
● Defined relative to OpenGL 2.0
● Shaders only (no fixed pipeline)

– No lighting except in shaders
– Textures only in shaders

● Removes transformation functions
– No glRotate() glScale() glTranslate()



   



   

OpenGL SC
● OpenGL for Safety Critical applications

– Avionics
– Automotive
– Industrial
– Medical
– Military



   

OpenGL SC Features

● Starts with OpenGL ES 1.0
● Adds back some features

– Begin/End
– Display Lists
– Some raster ops
– Anti-aliasing

● Removes some features
– Compressed textures
– Multisampling
– Fog

● Limits some features



   

EGL (Native Platform Interface)

● Performs some functions implemented by 
GLUT and SDL on the desktop

– eglCreateWindowSurface()
– eglSwapBuffers()

● Does not provide all the functionality 
provided by GLUT

– User input
– Redisplay



   

Apple iOS Devices

● Supports OpenGL ES 1.1 or 2.0
– Newer devices support 1.1 AND 2.0

● User interface is Objective C
– Links to C and C++ code

● Develop with Xcode on Mac only
● Emulator for all devices

– Slower than native devices
– Almost perfect emulation



   



   

Android Devices

● Supports OpenGL ES 1.1 or 2.0
– Newer devices support 1.1 AND 2.0

● User interface is Java
– Link to C/C++ code with JNI

● Develop with NDK
● Emulator for phones and tablets

– Slower than native devices
– Emulator DOES NOT support OpenGL ES 2.0



   

Portable OpenGL ES Code

● Write the bulk of the code in C++
– OpenGL ES 1.1 will run on all devices
– OpenGL ES 2.0 will run on newer devices

● Write minimal code in interface language
– Objective C – link to C/C++
– Java – call C/C++ using JNI

● Currently no system agnostic libraries like 
SDL and GLUT for all devices



   

WebGL

● OpenGL ES 2.0 for the web
● Extends Javascript
● Operates on HTML5 canvas element
● Prohibits client side arrays

– All vertex, normal, color, … must be stored 
in Vertex Buffer Object on video card

● Work in progress
– Bleeding edge HTML & OpenGL



   

WebGL Platforms

● Supported by most browsers
– Chrome (recommended)
– Firefox
– Safari (may need WebKit)
– Opera
– Explorer (using IEWebGL plugin)

● Update to recent version



   

Assignment 4

● Create a scene that can be viewed in 3D 
using WebGL

● Objects must be created by hand
– I want you to get some experience using 

vertex buffer objects
– May use CanvasMatrix library

● Explore advanced features such as 
lighting, textures, ...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

