
   

CSCI 4239/5239

Advanced      
Computer

       Graphics
Spring 2013



   

Instructor

● Willem A (Vlakkies) Schreüder
● Email: willem@prinmath.com

– Begin subject with 4830 or 7000
– Resend email not answered promptly

● Office Hours:
– ECST 121 Thursday 4-5pm
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm

mailto:willem@prinmath.com


   

Course Objectives
● Explore advanced topics in

   Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Particle systems

● Assignments:  Practical OpenGL
– Building useful applications



   

Course Organization and Grading

● Class participation (50% grade)
– First hour:  Discussion/Show and tell

● Weekly homework assignments
● Volunteers and/or round robin

– Second hour:  Introduction of next topic

● Semester project (50% grade)
– Build a significant application in OpenGL
– 10 minute presentation last class periods

● No formal tests or final



   

Assumptions

● You need to be fluent in C/C++
– Examples are in C or simple C++
– You can do assignments in any language

● I may need help getting it to work on my system

● You need to be comfortable with OpenGL
– CSCI 4229/5229 or equivalent 
– You need a working OpenGL environment



   

Grading
● Satisfactory complete all assignments => A

– The goal is to impress your friends

● Assignments must be submitted on time 
unless prior arrangements are made
– Due by Thursday morning
– Grace period until Thursday noon

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● Grade <100 means not satisfactory (not A)



   

Class Attendance
● Attendance is highly encouraged
● More of a seminar than a lecture

– Participation is important

● I don't take attendance
● Lectures are available if you miss class

– If you are sick stay home

● Lecture video access
– http://cuengineeringonline.colorado.edu/
– Log in with Identikey credentials
– Email me if you don't see this class 

http://cuengineeringonline.colorado.edu/


   

Code Reuse
● Code from the internet or class examples 

may be used
– You take responsibility for any bugs in the code

● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Credit the source

● The assignment is a minimum requirement



   

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs

– Clean code

● Good code organization
● Appropriate to the problem at hand



   

Text

● OpenGL Shading Language (3ed)
– Randi J. Rost et. al.
– “OpenGL Orange Book”
– Implementing Shaders using GLSL

●  Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required



   

Other Texts
● OpenGL Programming Guide (7ed)

– Shreiner
– “OpenGL Red Book”
– Download previous editions as PDF

● OpenGL SuperBible: Comprehensive Tutorial 
and Reference (5ed)
– Wright, Haemel, Sellers & Lipchak
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples



   

Other Texts

● OpenGL ES 2.0 Programming Guide
– Munshi, Ginsburg & Shreiner
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● iPhone 3D Programming
– Rideout
– Great introduction to portable programs



   

Other Texts

● Programming Massively Parallel Processors
– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples



   

Other Texts

●  Advanced Graphics Programming Using 
OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced 

topics



   

OpenGL Resources
● www.google.com

– Need I say more?

● www.opengl.org
– Code and tutorials

● nehe.gamedev.net
www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229



   

Assignment 0
● Due: Friday Jan 18 by 9pm
● Sign up with moodle.cs.colorado.edu

– Enrollment key:  42395239
– A picture will help me learn your names

● Submit
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)
– CAETE students propose a schedule for work



   

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran and Perl
● Outside interests

– Aviation
– Amateur radio (voice and digital)



   

How to get started
● Make sure you have a working OpenGL 

environment
– Compile and run examples from CSCI [45]229

● Ex 5   (hello world) for basics
● Ex 35 (shaders) for advanced

● Make sure advanced examples work
– Windows may need GLEW
– Linux/nVidia may need driver and library 

from nVidia
– OS/X may need Xcode



   

OpenGL Extension Wrangler 
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or 
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)



   

Assignment 1
● Due: Thursday January 24
● Alternate OpenGL wrappers

– GLUT is an easy to use, cross platform wrapper for 
running OpenGL

● Created for the Red Book
● Used by most OpenGL texts

– Investigate alternative wrappers and compare it to 
GLUT, for example

● Qt  (Cross platform C++ application framework)
● Simple DirectMedia Layer (SDL)
● iPhone or Android

– Write a simple visualizer of a 3D scene



   

Assignment 2
● Due: Thursday January 31
● NDC to RGB shader

– For every point on the objects, the color 
should be determined by its position in 
normalized device coordinates

● The goal is to make this as short and 
elegant as possible



   

Project
● Should be a program with a significant 

graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 14
– Progress: Thursday April 4
– Review:    Thursday April 18
– Final: Monday April 29



   

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 12.04
– Set #ifdef so I can compile and run it

● Submit using moodle.cs.colorado.edu
– ZIP or TAR (no RAR)
– Name executables hw1, hw2, ... 
– Create a makefile so I can do make clean;make
– Set window title to Assignment X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if no 

grade or less than 100%



   

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it in CSEL or a Linux box
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...



   

Class Discussions
● If have a special interest in the topic and 

have something special to contribute 
VOLUNTEER to lead the discussion

● If by Sunday there are no volunteers, I 
will appoint volunteers some on a round 
robin basis  (in order by MD5 of names)
– You can trade places if you can talk 

somebody into or out of a slot

● Everybody should do this at least once, 
but you can do more if you want
– CAETE students Skype or screencast

● Popular topics may have more presenters



   

What to Present

● Should be (mostly) the assigned topic
– Feel free to push the envelope
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting



   

How to Present
● 15 minutes can be forever or over in a wink

– Plan your time (practice a bit)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions



   

How to Listen

● If you don't understand, ask
– Helps the presenter understand what's new 

to you

● If you disagree, say so
– Maybe the presenter misspoke or has an 

different opinion worth discussing

● Be nice – you may be next!



   

CAETE Students

● Suggest ways you can present remotely
● Provide screen cast or similar demonstration
● Skype or other desktop sharing

– Performance may be an issue

● Stick to the class schedule if possible



   

Parallel Flight Simulator Project
● Consider joining a project with many members

– Each member has a specific subtask
● World visualization
● Special effects
● Flight dynamics
● Multi-function displays (instruments)
● Networking
● Flight controls
● Sound

– Rotating project manager
● Responsible for managing the project for a week
● Provide concise report of what was done the last week
● Lay out a plan for what should be done the next week

● Somewhat like a real software project
– I will be the client



   

Review of OpenGL
● OpenGL is an API or library

– GLU for some utilities and convenience functions
– GLUT or other library for OS interface
– Just gets a picture inside an OS supplied window

● OpenGL uses a state machine
– Function calls set attributes that apply to 

subsequent objects
– Objects are built from primitive elements

● Vertexes define points in 3D space
● Build lines and polygons from vertexes
● Build 3D objects from polygons (skin only)



   

Vertex Attributes
● Position (x,y,z,w)

– glVertex

● Color (R,G,B,)
– glColor

● Normal (x
n
,y

n
,z

n
,w

n
)

– glNormal

● Texture Coordinates (s,t,r,q)
– glTexture
– glMultiTex

● User defined attributes



   

Points

● One at each vertex
– glBegin(GL_POINTS)

● Point size
– glPointSize()



   

Lines

● Built from vertexes
– glBegin(GL_LINES)
– glBegin(GL_LINE_STRIP)
– glBegin(GL_LINE_LOOP)

● Line pattern
– glLineStipple()

● Line width
– glLineWidth()



   

Polygons

● Build from vertexes
– glBegin(GL_POLYGON)
– glBegin(GL_TRIANGLES)
– glBegin(GL_QUADS)
– many more

● Must be planar
● Fill pattern

– glPolygonStipple()
– glShadeModel()



   

OpenGL Transformation 
Pipeline



   

Transformations
● glMatrixMode()
● Primitive transforms

– glTranslate
– glScaled
– glRotated

● Utilities
– gluPerspective()
– gluLookat()

● Direct manipulation
– glMultMatrix

● Deprecated in OpenGL4 Core Profile



   

Modes

● glEnable(), glDisable()
– GL_DEPTH_TEST
– GL_CULL_FACE
– GL_LIGHTING
– GL_TEXTURE_2D
– GL_SHADOWS



   

Blinn-Phong Lighting

● Enable GL_LIGHTING & GL_LIGHTx
● glLightXXX

– Ambient, Diffuse, Specular
– Position, Direction, Spot Angle
– Local/Global, One/Two sided

● glMaterialXXX
– Emission, Ambient, Diffuse, Specular, 

Shininess 

● glNormal



   

Textures

● glEnable(GL_TEXTURE_xD)
● glGenTexture()
● glBindTexture()
● glTexImage2D()

– you need to load the image yourself

● glTexParameter()
● glTexEnv()



   

Blending and Transparency

● glEnable(GL_BLEND)
● glBendFunc(source,destination)

– GL_ZERO
– GL_ONE
– GL_DST_COLOR
– GL_ONE_MINUS_DST_COLOR
– GL_SRC_ALPHA
– GL_ONE_MINUS_SRC_COLOR
– GL_DST_ALPHA
– GL_ONE_MINUS_DST_ALPHA
– GL_SRC_ALPHA_SATURATE

● Anti-aliasing



   

Other Features

● Display Lists
● Polygon Offset
● Fog
● Bezier curves and surfaces
● Masking

– Color, Z-buffer, etc can be made read-only
– Stencil buffer

● Shadows (Shadow Volume & Shadow Map)
● Many more..



   

OpenGL 4
● Core Profile

– High performance rendering
– Deprecates many OpenGL functions

● Transformations
● Display lists

– Steep learning curve

● Compatibility profile
– Provides deprecated functionality
– Flatter learning curve

● I will mostly use OpenGL 2.3



   

Interfacing with the OS
● Displaying the image

– Request window features
– Redraw window
– Window resized

● User interaction
– Keyboard input
– Mouse input

● Other OS functions
– Elapsed time
– Sound



   

GLUT (OpenGL Utility Toolkit)

● Used by many textbooks
– Implementations for Unix, Windows, MacOS, ...

● Hides OS specific complexity
– Create window and request properties
– Callback functions to process events

● Display
● Keyboard
● Mouse

– glutGet to access time, dimensions, ...

● Limited support for menus



   

Alternatives to GLUT
● Simple Directmedia Layer

– Similar to GLUT
– Add sound, menus, etc..

● Trolltech/Nokia Qt
– Cross Platform C++ Application Framework
– Comprehensive sets of widgets
– OpenGL window is a widget

● iPhone SDK
● Android SDK or NDK
● Many others
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