
   

CSCI 4239/5239

Advanced      
Computer

       Graphics
Spring 2013



   

Instructor

● Willem A (Vlakkies) Schreüder
● Email: willem@prinmath.com

– Begin subject with 4830 or 7000
– Resend email not answered promptly

● Office Hours:
– ECST 121 Thursday 4-5pm
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm

mailto:willem@prinmath.com


   

Course Objectives
● Explore advanced topics in

   Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Particle systems

● Assignments:  Practical OpenGL
– Building useful applications



   

Course Organization and Grading

● Class participation (50% grade)
– First hour:  Discussion/Show and tell

● Weekly homework assignments
● Volunteers and/or round robin

– Second hour:  Introduction of next topic

● Semester project (50% grade)
– Build a significant application in OpenGL
– 10 minute presentation last class periods

● No formal tests or final



   

Assumptions

● You need to be fluent in C/C++
– Examples are in C or simple C++
– You can do assignments in any language

● I may need help getting it to work on my system

● You need to be comfortable with OpenGL
– CSCI 4229/5229 or equivalent 
– You need a working OpenGL environment



   

Grading
● Satisfactory complete all assignments => A

– The goal is to impress your friends

● Assignments must be submitted on time 
unless prior arrangements are made
– Due by Thursday morning
– Grace period until Thursday noon

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● Grade <100 means not satisfactory (not A)



   

Class Attendance
● Attendance is highly encouraged
● More of a seminar than a lecture

– Participation is important

● I don't take attendance
● Lectures are available if you miss class

– If you are sick stay home

● Lecture video access
– http://cuengineeringonline.colorado.edu/
– Log in with Identikey credentials
– Email me if you don't see this class 

http://cuengineeringonline.colorado.edu/


   

Code Reuse
● Code from the internet or class examples 

may be used
– You take responsibility for any bugs in the code

● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Credit the source

● The assignment is a minimum requirement



   

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs

– Clean code

● Good code organization
● Appropriate to the problem at hand



   

Text

● OpenGL Shading Language (3ed)
– Randi J. Rost et. al.
– “OpenGL Orange Book”
– Implementing Shaders using GLSL

●  Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required



   

Other Texts
● OpenGL Programming Guide (7ed)

– Shreiner
– “OpenGL Red Book”
– Download previous editions as PDF

● OpenGL SuperBible: Comprehensive Tutorial 
and Reference (5ed)
– Wright, Haemel, Sellers & Lipchak
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples



   

Other Texts

● OpenGL ES 2.0 Programming Guide
– Munshi, Ginsburg & Shreiner
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● iPhone 3D Programming
– Rideout
– Great introduction to portable programs



   

Other Texts

● Programming Massively Parallel Processors
– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples



   

Other Texts

●  Advanced Graphics Programming Using 
OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced 

topics



   

OpenGL Resources
● www.google.com

– Need I say more?

● www.opengl.org
– Code and tutorials

● nehe.gamedev.net
www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229



   

Assignment 0
● Due: Friday Jan 18 by 9pm
● Sign up with moodle.cs.colorado.edu

– Enrollment key:  42395239
– A picture will help me learn your names

● Submit
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)
– CAETE students propose a schedule for work



   

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran and Perl
● Outside interests

– Aviation
– Amateur radio (voice and digital)



   

How to get started
● Make sure you have a working OpenGL 

environment
– Compile and run examples from CSCI [45]229

● Ex 5   (hello world) for basics
● Ex 35 (shaders) for advanced

● Make sure advanced examples work
– Windows may need GLEW
– Linux/nVidia may need driver and library 

from nVidia
– OS/X may need Xcode



   

OpenGL Extension Wrangler 
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or 
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)



   

Assignment 1
● Due: Thursday January 24
● Alternate OpenGL wrappers

– GLUT is an easy to use, cross platform wrapper for 
running OpenGL

● Created for the Red Book
● Used by most OpenGL texts

– Investigate alternative wrappers and compare it to 
GLUT, for example

● Qt  (Cross platform C++ application framework)
● Simple DirectMedia Layer (SDL)
● iPhone or Android

– Write a simple visualizer of a 3D scene



   

Assignment 2
● Due: Thursday January 31
● NDC to RGB shader

– For every point on the objects, the color 
should be determined by its position in 
normalized device coordinates

● The goal is to make this as short and 
elegant as possible



   

Project
● Should be a program with a significant 

graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 14
– Progress: Thursday April 4
– Review:    Thursday April 18
– Final: Monday April 29



   

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 12.04
– Set #ifdef so I can compile and run it

● Submit using moodle.cs.colorado.edu
– ZIP or TAR (no RAR)
– Name executables hw1, hw2, ... 
– Create a makefile so I can do make clean;make
– Set window title to Assignment X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if no 

grade or less than 100%



   

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it in CSEL or a Linux box
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...



   

Class Discussions
● If have a special interest in the topic and 

have something special to contribute 
VOLUNTEER to lead the discussion

● If by Sunday there are no volunteers, I 
will appoint volunteers some on a round 
robin basis  (in order by MD5 of names)
– You can trade places if you can talk 

somebody into or out of a slot

● Everybody should do this at least once, 
but you can do more if you want
– CAETE students Skype or screencast

● Popular topics may have more presenters



   

What to Present

● Should be (mostly) the assigned topic
– Feel free to push the envelope
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting



   

How to Present
● 15 minutes can be forever or over in a wink

– Plan your time (practice a bit)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions



   

How to Listen

● If you don't understand, ask
– Helps the presenter understand what's new 

to you

● If you disagree, say so
– Maybe the presenter misspoke or has an 

different opinion worth discussing

● Be nice – you may be next!



   

CAETE Students

● Suggest ways you can present remotely
● Provide screen cast or similar demonstration
● Skype or other desktop sharing

– Performance may be an issue

● Stick to the class schedule if possible



   

Parallel Flight Simulator Project
● Consider joining a project with many members

– Each member has a specific subtask
● World visualization
● Special effects
● Flight dynamics
● Multi-function displays (instruments)
● Networking
● Flight controls
● Sound

– Rotating project manager
● Responsible for managing the project for a week
● Provide concise report of what was done the last week
● Lay out a plan for what should be done the next week

● Somewhat like a real software project
– I will be the client



   

Review of OpenGL
● OpenGL is an API or library

– GLU for some utilities and convenience functions
– GLUT or other library for OS interface
– Just gets a picture inside an OS supplied window

● OpenGL uses a state machine
– Function calls set attributes that apply to 

subsequent objects
– Objects are built from primitive elements

● Vertexes define points in 3D space
● Build lines and polygons from vertexes
● Build 3D objects from polygons (skin only)



   

Vertex Attributes
● Position (x,y,z,w)

– glVertex

● Color (R,G,B,)
– glColor

● Normal (x
n
,y

n
,z

n
,w

n
)

– glNormal

● Texture Coordinates (s,t,r,q)
– glTexture
– glMultiTex

● User defined attributes



   

Points

● One at each vertex
– glBegin(GL_POINTS)

● Point size
– glPointSize()



   

Lines

● Built from vertexes
– glBegin(GL_LINES)
– glBegin(GL_LINE_STRIP)
– glBegin(GL_LINE_LOOP)

● Line pattern
– glLineStipple()

● Line width
– glLineWidth()



   

Polygons

● Build from vertexes
– glBegin(GL_POLYGON)
– glBegin(GL_TRIANGLES)
– glBegin(GL_QUADS)
– many more

● Must be planar
● Fill pattern

– glPolygonStipple()
– glShadeModel()



   

OpenGL Transformation 
Pipeline



   

Transformations
● glMatrixMode()
● Primitive transforms

– glTranslate
– glScaled
– glRotated

● Utilities
– gluPerspective()
– gluLookat()

● Direct manipulation
– glMultMatrix

● Deprecated in OpenGL4 Core Profile



   

Modes

● glEnable(), glDisable()
– GL_DEPTH_TEST
– GL_CULL_FACE
– GL_LIGHTING
– GL_TEXTURE_2D
– GL_SHADOWS



   

Blinn-Phong Lighting

● Enable GL_LIGHTING & GL_LIGHTx
● glLightXXX

– Ambient, Diffuse, Specular
– Position, Direction, Spot Angle
– Local/Global, One/Two sided

● glMaterialXXX
– Emission, Ambient, Diffuse, Specular, 

Shininess 

● glNormal



   

Textures

● glEnable(GL_TEXTURE_xD)
● glGenTexture()
● glBindTexture()
● glTexImage2D()

– you need to load the image yourself

● glTexParameter()
● glTexEnv()



   

Blending and Transparency

● glEnable(GL_BLEND)
● glBendFunc(source,destination)

– GL_ZERO
– GL_ONE
– GL_DST_COLOR
– GL_ONE_MINUS_DST_COLOR
– GL_SRC_ALPHA
– GL_ONE_MINUS_SRC_COLOR
– GL_DST_ALPHA
– GL_ONE_MINUS_DST_ALPHA
– GL_SRC_ALPHA_SATURATE

● Anti-aliasing



   

Other Features

● Display Lists
● Polygon Offset
● Fog
● Bezier curves and surfaces
● Masking

– Color, Z-buffer, etc can be made read-only
– Stencil buffer

● Shadows (Shadow Volume & Shadow Map)
● Many more..



   

OpenGL 4
● Core Profile

– High performance rendering
– Deprecates many OpenGL functions

● Transformations
● Display lists

– Steep learning curve

● Compatibility profile
– Provides deprecated functionality
– Flatter learning curve

● I will mostly use OpenGL 2.3



   

Interfacing with the OS
● Displaying the image

– Request window features
– Redraw window
– Window resized

● User interaction
– Keyboard input
– Mouse input

● Other OS functions
– Elapsed time
– Sound



   

GLUT (OpenGL Utility Toolkit)

● Used by many textbooks
– Implementations for Unix, Windows, MacOS, ...

● Hides OS specific complexity
– Create window and request properties
– Callback functions to process events

● Display
● Keyboard
● Mouse

– glutGet to access time, dimensions, ...

● Limited support for menus



   

Alternatives to GLUT
● Simple Directmedia Layer

– Similar to GLUT
– Add sound, menus, etc..

● Trolltech/Nokia Qt
– Cross Platform C++ Application Framework
– Comprehensive sets of widgets
– OpenGL window is a widget

● iPhone SDK
● Android SDK or NDK
● Many others


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

