Particle Systems

CSCl1 4239/5239
Advanced Computer Graphics
Spring 2015



What is i1t?
« Use points to create a realistic visual effect
- Rain
- Smoke
- Fire
« Particle properties

- Movement
- Color
- Transparency

 Can be done efficiently in a shader
- Lots of individual points



Big Particles

 Fair sized polygon

« Oriented to be face viewer

e Textured to provide details
« May be blended

e Typica
« Typica

y uniform color
y lit with constant normal



Big Particle Smoke

Single "big particle”

Smoke cloud composed of multiple big particles

From Advanced Graphics Programming Using OpenGL



Small Particles

 More suited to objects with diffuse, highly
chaotic boundaries

- Clouds
- Fire

 One or two pixels in size, rarely textured
- Point size may be a function of distance

From ICE Particle Shaders




Number of Particles

* Performance

e Size

« Too many may be too dense
e Too few may not be realistic

e The “best” answer Is determined
experimentally



Managing Particles

Start time

Initial properties
Lifespan

Behavior during lifespan
Accumulation
Reincarnation



Managing Particles

Start time

Initial properties
Lifespan

Behavior during lifespan
Accumulation
Reincarnation



Efficiently Implementing Points

« Standard attributes

- Position, Color, Normal, Texture Coordinates
* Vertex shader may need more attributes
- Velocity, Start time
 OpenGL Support
- glDrawArrays()

- glBindAttribLocation()

- glVertexPointer(), glColorPointer(),
AttribPointer()

9
- glEnableClientState(),
glEnableVertexAttribArray()




Point Sprites

e Large point with a texture applied

 OpenGL Support

- glEnable(GL POINT SPRITE)
« Vertex Shader

- Transform particle location
 Fragment shader

- Set every pixel on point

- gl PointCoord varies 0-1 across pixel
e Use as texture coordinates



Particle Interactions

e Particles may or may not interact with the
environment or each other

- Sand grains bouncing off each other
- Sand grains bouncing off an object

« Particles may be made to appear to
interact by blending

- Order and blend modes are important
 Interaction adds computational cost



Shader/Fixed Implementation

* Fixed implementation allows more
flexibility
- Access to more functions (e.g. rand())
- Significant computational costs
- State changes are expensive (e.qg. point size)

« Shader implementation

- Huge efficiency increase
« Parallelizable
- A bit less flexible

- Harder to do interactions with the
environment



Applications

Precipitation (rain, snow)
Smoke

* Vapor trails

Fire
Explosions

Cloud
Distant lights (stars)



Application: Precipitation

« Effected by wind

« Rain drops are somewhat transparent
 Snow flakes are shiny

 Snow should accumulate

« Motion blur

« “Curtain” over scene vs. volumetric



Application: Smoke

« Smoke may rise from a source, or be
everywhere in the scene

« Changes in density are a key feature
« Effected by air currents
« Turbulence

« Particles may be persistent or transitory



Application: Vapor trail

Like smoke but fades over time
Effected by air currents (drift)
Generally not buoyant

Particles typically have a finite life span



Application: Fire

 Luminescent particles
* Very dynamic
- Buoyant

- Turbulent
- Short life span

« Hard to do realistically

- Needs lots of small particles
- Fewer large particles



Application: Explosions

* Very short lived
* Very dynamic
 Fireball

- Centered on a point
- Flash of light
- Flames in Hollywood explosions

« Smoke
* Pieces of stuff blown up



Application: Clouds

Amorphous
Distant
Like smoke but may be more persistent

May be more efficient with large particles
and textures using blending



Application: Light Points

e Stars

- Twinkle due to atmospheric turbulence
- Can be a temporal noise function

 Beacons, runway lights

- Perspective (brightness) important depth cue
- May be directional or periodic



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

