

Shader Lighting,
Textures and

Shadows
CSCI 4239/5239

Advanced Computer Graphics
Spring 2017

Shader Lighting
● Ultimate flexibility

– Lighting method
● Phong reflection
● Blinn-Phong reflection

– Lighting
● Per vertex with Gouraud shading
● Per pixel lighting

– Special effects
● High Dynamic Range lighting

● Ultimate responsibility
– Nothing happens automatically

OpenGL Lighting Components

● C = M
E
+ M

A
(C

A
+C

G
) + (N•L)M

D
C

D
 + (N•H)SM

S
C

S

● C
X
 are light components

● M
X
 are material components

● Components
– Emission
– Ambient (also Global Ambient)
– Diffuse
– Specular

● Calculated for each light, vertex, RGBA
● Assumes values in the range 0-1

Diffuse Reflections

● Diffuse light scatters in all directions
– Lambertian reflection

● Intensity depends on cosine of the angle
of incidence

● Intensity (N•L)MC
D

Phong Reflection Model
● L light source
● N normal vector for surface
● R reflected light

– R = 2(L•N)N – L

● V viewer (eye)
● Intensity (V•R)SMC

– S shininess
– M material reflection coefficient
– C color if light source

● Calculated independently for R,G,B

Blinn-Phong Reflection Model

● Also called modified Phong or Fast Phong
● Simpler and faster
● Half angle H = L+V (renormalize)
● Intensity (N•H)SMC

Per Vertex Lighting

● Calculate lighting at vertex
● Linearly interpolate across polygon

– This is often called Gouraud shading
– Real Gouraud shading averages normals at

vertexes and then interpolates

● Effort proportional to number of vertexes
● May miss important effects for large

polygons

Per pixel lighting

● Calculate lighting at pixel
● Calculate ambient and emission by vertex

– Set L,P,V,H for use in frag shader

● Calculate diffuse and specular by pixel
● Effort proportional to number of pixels

Shader Textures

● Pointer to texture
– sampler2D name;
– Points to current texture from glBindTexture()

● Extract pixel at vec2 texture coordinate pos
– texture2D(name,pos);

● Different sampler/function for 1D,2D,LOD,...
● Returns vec4 (RGBA)

Assignment 3: Performance

● Explore the performance of different ways to
do things in shaders
– int vs. float
– built-in functions vs. expressions
– functions vs. inline
– OS, hardware, etc dependencies

● Use lighting, textures, procedural textures,
etc. to measure performance
– Use fps(int) signal from Ex04

● Make sure VSYNC is disabled

Shadows in Computer Graphics

● Shadows are important to realism

– Depth cues
– Relative positions of objects

● Doesn't “just happen” when lighting is turned on

– Nor is there a glEnable(GL_SHADOWS)
● Scene must be rendered 2-4 times

● Shader implementation can be efficient

– Draw once every time the light or scene
changes

– Draw once for every eye position

Shadow Methods

● Planar Shadows (CSCI 5229 ex34)
– Shadows on the floor only

● Shadow Volumes (CSCI 5229 ex35)
– True shadow, very hard
– Requires four passes (two are fast)

● Shadow Maps (CSCI 5229 ex36)
– True shadows, depth in textures
– Fast implementation via shader

Shadow Mapping
● Project with light as viewpoint
● Depth buffer from light
● Light/shadow determined just like

visibility
– Objects in light foremost in depth buffer
– Objects in shadow depth obscured

● Requires second depth buffer
– Store depth to texture
– Compare R to texture

● In OpenGL extensions
● Used in Toy Story etc.

Shadow Map Shader
● Draw shadow map

– Bind framebuffer to depth texture
– Draw scene with eye at light to generate

depths
– Update if light or scene changes

● Draw scene
– Generate texture coordinates with light PoV
– Compare depth (R) with depth texture

● R=depth means lit – light as normal
● R>depth means shadowed – ambient light only

● Fast, Simple, Realistic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

