

Ray Tracing
CSCI 4239/5239

Advanced Computer Graphics
Spring 2022

What is it?

● Method for
rendering a scene
using the concept
of optical rays
bouncing off
objects
– More realistic
– Reflections
– Shadows

How does it work?

Sources

● Ray Tracing from the Ground Up
– Kevin Suffern
– Excellent tutorial
– Some working examples
– http://www.raytracegroundup.com/

● nVidia
● Intel
● PBRT (Physically Based Ray Tracing)

Interactive Ray Tracing

● True ray tracing is VERY compute intensive
● Global problem – scene complexity adds effort
● Generally there is no upper limit to computation
● Solutions are generally software based

– Dedicated hardware provides 3-5x speedup
– http://www.caustic.com/
– OpenRL
– Maya Plugins

● Compare nVidia RTX

nVidia Quadra Plex
1920x1024@30fps

nVidia Quadra Plex
1920x1024@30fps

`

How is it Done?

● Scene Description Language
– Defines objects in scene

● Geometry and properties

– Lights
– Eye position

● Determine color of individual pixels using
ray tracing algoritms
– Very hard to do real time

How ray tracing works
● Define scene and view

– objects
– lights
– eye

● For each pixel
– Shoot ray from pixel
– Find nearest hit
– Use object properties

and lights to calculate
color, or set to black if
no hits

`

True Global Ray Tracing

● Light can bounce many times
– Color changes at each bounce
– Each bounce attenuates light
– Light scatters in complex ways
– Objects block light

● This simple scene took
2 CPU years to render
– Cornell Box
– Area light and three boxes

Efficiency and Complexity

● Most ray tracers written in C++
– Object Oriented paradigm for objects, rays,

colors
– Good efficiency/readability trade-off

● Efficiency is a HUGE deal
– Pushing the envelope of hardware
– Algorithm is global by definition

● Recursion and complexity
– Need clean interface on objects

What is a Ray?

● p = o + t d
● Types of rays

– Primary rays
– Secondary rays
– Shadow rays
– Light rays

● Rays are one directional

Intersections

Intersecting a Sphere

● Simplest 3D object
– Center
– Radius

● Smooth normal
● Intersections

– none
– once

● tangent
● internal

– twice

Implicit Surfaces

● General
– f(x,y,z) = 0

● Plane: Point a and Normal n
– (p-a)n=0

● Sphere
– (p-a)(p-a) – r2 = 0

● Triangle
– Limit plane

Interaction between
Lights and Objects

Bouncing Rays from Surfaces

Light Reflection
● Diffuse (Lambertian)

reflection
– Intensity Factor NL

● Specular reflection
– R = 2(NL)N-L
– Intensity Factor

Specular Reflected Light

● Assume the ray (from the eye) hits
objects 1,2,3,... with reflection
coefficients

1
,

2
,

3
,...

● Specular Reflection Color

1
(C

1
+

2
(C

2
+

3
(C

3
+...)))

=
1
C

1
+

1

2
C

2
+

1

2

3
C

3
+...

● Since light is assumed to be linearly
additive, just keep track of and add
light along successive bounces of the ray

● White specular means can be a scalar

Simple Ray Tracing Algorithm
● Initialize ray (O,d)

– color = black
– coef = 1

● Find closest intersection P
– color += coef*ambient*material
– if not in shadow color +=

coef*N•L*diffuse*material
– coef *= reflectivity
– redirect ray from P to d – 2(d•N)N

● Stop when no intersection, or coef<<1, or
maximum number of bounces

Ex 23: Three Ray Traced Spheres

● Simple scene
– Three highly reflective spheres
– Two white lights (one close, one far)
– OpenMP for parallel processing

● Support classes
– Vec3, Mat3, Color

● Base classes
– Ray, Material, Light

● Object classes
– Sphere

Implementation Notes
● Written in very bad C++

– KISS
– No object abstraction

● Use STL vector<> class for lists
● Calculate array of pixel values width x height

– View by transforming pixel location
– OpenMP parallel calls to RayTracePixel()
– Copy to screen using glDrawPixels

● All calculations in global coordinates
– Preprocess scene as needed

Building a real Ray Tracer in C++
● Base classes

– Ray
– Object
– Light
– Material

● Derived Object Classes
– Sphere
– Cube
– Triangle
– Triangle Mesh

Object Class

● Type of object
– Implicit Surface

● Sphere
● Torus, cylinder, cube, ...

– Compound objects
● Triangular mesh

● Intersection with a ray
– Point of intersection
– Normal
– Textures, etc

Virtual Methods

● Base class
– hit
– sample
– color

● Each object class overrides the base class

Intersecting a Complex Object
● Defining a complex object

– Triangle mesh on vertexes
– Gouraud shading

● Expensive to ray trace
– Test every ray against every triangle in the

object
– Test bounding box of entire object

● Intersections
– Plane
– Axis-aligned box
– Generic triangle

Perspective Ray Tracing

Stereoscopy

Installing PBRT3

● Build code from github
– git clone --recursive https://github.com/mmp/pbrt-

v3.git
– git clone git://git.pbrt.org/pbrt-v3-scenes
– apt-get install openexr-viewers
– cd pbrt-v3
– mkdir build
– cd build
– cmake ..
– make -j8
– sudo make install

● Run using pbrt ?????.pbrt
● exrdisplay *.exr
● PBRT4 similar but syntax changed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

