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What is it?

● Method for 
rendering a scene 
using the concept 
of optical rays 
bouncing off 
objects
– More realistic
– Reflections
– Shadows



  

How does it work?



  

Sources

● Ray Tracing from the Ground Up
– Kevin Suffern
– Excellent tutorial
– Some working examples
– http://www.raytracegroundup.com/

● nVidia
● Intel
● PBRT (Physically Based Ray Tracing)



  

Interactive Ray Tracing

● True ray tracing is VERY compute intensive
● Global problem – scene complexity adds effort
● Generally there is no upper limit to computation
● Solutions are generally software based

– Dedicated hardware provides 3-5x speedup
– http://www.caustic.com/
– OpenRL
– Maya Plugins

● Compare nVidia RTX



  

nVidia Quadra Plex 
1920x1024@30fps



  

nVidia Quadra Plex 
1920x1024@30fps
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How is it Done?

● Scene Description Language
– Defines objects in scene

● Geometry and properties

– Lights
– Eye position

● Determine color of individual pixels using 
ray tracing algoritms
– Very hard to do real time



  

How ray tracing works
● Define scene and view

– objects
– lights
– eye

● For each pixel
– Shoot ray from pixel 
– Find nearest hit
– Use object properties 

and lights to calculate 
color, or set to black if 
no hits

`



  

True Global Ray Tracing

● Light can bounce many times
– Color changes at each bounce
– Each bounce attenuates light
– Light scatters in complex ways
– Objects block light

● This simple scene took 
2 CPU years to render
– Cornell Box
– Area light and three boxes



  

Efficiency and Complexity

● Most ray tracers written in C++
– Object Oriented paradigm for objects, rays, 

colors
– Good efficiency/readability trade-off

● Efficiency is a HUGE deal
– Pushing the envelope of hardware
– Algorithm is global by definition

● Recursion and complexity
– Need clean interface on objects



  

What is a Ray?

● p = o + t d
● Types of rays

– Primary rays
– Secondary rays
– Shadow rays
– Light rays

● Rays are one directional



  

Intersections



  

Intersecting a Sphere

● Simplest 3D object
– Center
– Radius

● Smooth normal
● Intersections

– none
– once

● tangent
● internal

– twice



  

Implicit Surfaces

● General
– f(x,y,z) = 0

● Plane:  Point a and Normal n
– (p-a)n=0

● Sphere
– (p-a)(p-a) – r2 = 0

● Triangle
– Limit plane



  

Interaction between
Lights and Objects



  

Bouncing Rays from Surfaces



  

Light Reflection
● Diffuse (Lambertian) 

reflection
– Intensity Factor NL

● Specular reflection
– R = 2(NL)N-L
– Intensity Factor 



  

Specular Reflected Light

● Assume the ray (from the eye) hits 
objects 1,2,3,... with reflection 
coefficients 
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● Since light is assumed to be linearly 
additive, just keep track of  and add 
light along successive bounces of the ray

● White specular means  can be a scalar



  

Simple Ray Tracing Algorithm
● Initialize ray (O,d)

– color = black
– coef = 1

● Find closest intersection P
– color += coef*ambient*material
– if not in shadow color += 

coef*N•L*diffuse*material
– coef *= reflectivity
– redirect ray from P to d – 2(d•N)N

● Stop when no intersection, or coef<<1, or 
maximum number of bounces



  

Ex 23:  Three Ray Traced Spheres

● Simple scene
– Three highly reflective spheres
– Two white lights (one close, one far)
– OpenMP for parallel processing

● Support classes
– Vec3, Mat3, Color

● Base classes
– Ray, Material, Light

● Object classes
– Sphere



  

Implementation Notes
● Written in very bad C++

– KISS
– No object abstraction

● Use STL vector<> class for lists
● Calculate array of pixel values width x height

– View by transforming pixel location
– OpenMP parallel calls to RayTracePixel()
– Copy to screen using glDrawPixels

● All calculations in global coordinates
– Preprocess scene as needed



  

Building a real Ray Tracer in C++
● Base classes

– Ray
– Object
– Light
– Material

● Derived Object Classes
– Sphere
– Cube
– Triangle
– Triangle Mesh



  

Object Class

● Type of object
– Implicit Surface

● Sphere
● Torus, cylinder, cube, ...

– Compound objects
● Triangular mesh

● Intersection with a ray
– Point of intersection
– Normal
– Textures, etc



  

Virtual Methods

● Base class
– hit
– sample
– color

● Each object class overrides the base class



  

Intersecting a Complex Object
● Defining a complex object

– Triangle mesh on vertexes
– Gouraud shading

● Expensive to ray trace
– Test every ray against every triangle in the 

object
– Test bounding box of entire object

● Intersections
– Plane
– Axis-aligned box
– Generic triangle



  

Perspective Ray Tracing



  

Stereoscopy



  

Installing PBRT3

● Build code from github
– git clone --recursive https://github.com/mmp/pbrt-

v3.git
– git clone git://git.pbrt.org/pbrt-v3-scenes
– apt-get install openexr-viewers
– cd pbrt-v3
– mkdir build
– cd build
– cmake ..
– make -j8
– sudo make install

● Run using pbrt ?????.pbrt
● exrdisplay *.exr
● PBRT4 similar but syntax changed
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