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Instructor
● Willem A (Vlakkies) Schreüder
● Email: vlakkies@colorado.edu

– Begin subject with 4239 or 5239
– Resend email not answered promptly

● Office Hours:
– Monday 3-4pm by Zoom
– Thursday noon-1pm by Zoom or in ECOT 732
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm



  

Course Objectives
● Explore advanced topics in

   Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Assignments:  Practical OpenGL
– Building useful applications
– Use GLFW to build programs



  

Course Organization
● Tuesday:

– Discussion of previous homework
– Presentations
– Volunteers and/or round robin

● Thursday:  Introduction of next topic
– Lecture
– Example programs



  

Grading
● Homeworks   50%

– You may skip one homework
● Presentations & Participation 20%

– Homework and final project
● Semester project 30%

– Build a significant graphics application
● No formal tests or final
● Grade Ranges

A A- B+ B B- C+ C C- D+ D D- F
100 95 90 85 80 75 70 65 60 55 50 40 0



  

Assumptions
● You need to be fluent in C/C++

– Examples are in C or C++
– You can do assignments in any language

● I may need help getting it to work on my system
● You need to be comfortable with OpenGL

– CSCI 4229/5229 or equivalent 
– You need a working OpenGL environment



  

Class Attendance
● Attendance is expected

– I don’t typically take attendance
● More of a seminar than a lecture

– Participation is important
– Mute your microphone when on Zoom
– Have your video on, expecially when talking

● If you are sick stay home
– Zoom lectures are recorded
– Catch up if you miss class



  

Grading Expectations
● Satisfactory complete all assignments => A

– The goal is to impress your friends
● Assignments must be submitted on time 

unless prior arrangements are made
– Due by 23:59 Monday or Wednesday evening
– No penalty grace period until Tuesday or 

Thursday morning at 8:00am
● Assignments must be completed individually

– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● Grade <100 means not satisfactory (not A)



  

Code Reuse
● Code from the internet or class may be used

– You take responsibility for any bugs in the code
● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Submitting code without crediting the 
source is  violation of the CU honor code

● The assignment is a minimum requirement



  

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs
– Clean code

● Clean out unused code
● Good code organization
● Appropriate to the problem at hand
● See Expectations on Canvas
● You need to understand every line



  

Text
● OpenGL Programming Guide (9ed)

– Kessenich, Sellers & Schreiner
– “OpenGL Vermillion Book”
– Implementing Shaders using GLSL
– Don't get an older edition

●  Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required



  

Other Texts
● OpenGL SuperBible: Comprehensive Tutorial 

and Reference (7ed)
– Sellers, Wright & Haemel
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples



  

Other Texts
● OpenGL ES 3.0 Programming Guide

– Ginsburg & Purnomo
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● WebGL Programming Guide
– Matsuda & Lea



  

Other Texts
● Programming Massively Parallel Processors

– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples



  

Other Texts
●  Advanced Graphics Programming Using 

OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced 

topics
● Physically Based Rendering

– Pharr, Jakob and Humpfreys
– Only for PBRT homework
– 3rd edition for PBRTv3



  

OpenGL Resources
● www.google.com

– Need I say more?
● www.opengl.org

– Code and tutorials
● nehe.gamedev.net

www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229



  

Assignment 0
● Due: Wednesday Jan 18 by 23:59
● Check your Canvas notification settings

– Set notifications to immediate
● Submit

– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)
– Does office hours work for you?
– Distance students let me know about attendance



  

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran, Perl & Python
● Outside interests

– Aviation
– Amateur radio



  

Hardware Requirements
● You need hardware that will run shaders well

– Integrated graphics may be marginal
– Graphics cards from the last 5 years should be OK
– GPU computing needs high end hardware
– A VM is probably not going to cut it

● Try on different hardware
– AMD/nVidia/Intel sometimes behave differently
– I have nVidia hardware



  

Examples use glfw
● Why drop GLUT?

– Apple support for GLUT is waning
– It is easy to use, but limited capabilities

● Why glfw
– It is cross platform: Linux/WinX/OSX/iOS/...
– Very light weight wrapper to OpenGL
– Does not do sound, load images, etc
– Actively being developed (Vulcan is coming...)

● Can I use SDL or another wrapper?
– As long as it is cross platform



  

OpenGL Extension Wrangler 
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or 
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– See Canvas for installation instructions



  

Installing glfw
● http://www.glfw.org/
● Ubuntu:

– apt-get install glfw3-dev
● OSX

– Install Xcode with command line tools
– Install homebrew
– Install toolchain, glfw and glew

● Windows
– Install MSYS2/MinGW
– Install toolchain, glfw and glew with pacman



  

CSCIx239 Library
● Includes GLFW and GLEW headers
● Many convenience functions

– InitWindow starts GLFW and GLEW
– Projection, Print, Fatal, ErrCheck, ...
– Load textures and OBJs
– Simple objects (Cube, Sphere, ...)
– Compile Shaders
– Matrix operations
– Performance (FPS, elapsed)

● Make sure you know what it does



  

Assignment 1
● Due: Monday January 23
● NDC to RGB shader

– For every point on the objects, the color 
should be determined by its position in 
normalized device coordinates

● The goal is to make this as short and 
elegant as possible
– Shader Golf
– Figure this out for yourself
– Make every operation count

● Test your toolchain



  

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 22.04.1 LTS
– Ubuntu provides glfw 3.3

● Submit using Canvas
– ZIP without creating an extra folder
– Name projects hw1, hw2, … (lower case)
– Include all source code, makefile and data files
– Set window title to Homework X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if 

requested



  

Project
● Should be a program with a significant 

graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Wednesday March 22
– Progress: Wednesday April 12
– Review: Monday April 24
– Final: Wednesday May 3



  

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on another machine
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...



  

Class Discussions
● If have a special interest in the topic and 

have something special to contribute 
VOLUNTEER to lead the discussion

● If there are no volunteers, I will appoint 
volunteers some on a round robin basis  
(in order by MD5 of names)
– You can trade places, but you are 

responsible for arranging a substitute
● You must present homework at least 

twice, but you can do more if you want
● Popular topics may have more presenters



  

What to Present
● Should be (mostly) the assigned topic

– Rabbit holes can be very interesting
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting



  

How to Present
● 20 minutes can be forever or over in a wink

– Plan your time (practice out load)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions



  

How to Listen
● If you don't understand, ask

– Helps the presenter understand what is new 
to you

● If you disagree, say so
– Maybe the presenter misspoke or has an 

different opinion worth discussing
● Be nice – you may be next!



  

Zoom Etiquette
● Try to arrange a quiet background
● Mute your audio when joining Zoom
● Turn on video when talking

– Leave your video on at other times if you can
● Interrupt me if I miss your chat question



  

What is a Shader?
● A shader is a computer program that runs on the 

GPU to calculate the properties of vertexes, pixels 
and other graphical processing

● Examples:
– Vertex position or color computed by a program
– Texture generated by a program
– Per-pixel lighting
– Image processing
– Cartoon shading



  

How does a shader work?
● Shader Language used to specify 

operations
– RenderMan, ISL, HLSL, Cg, GLSL

● Compile instructions into program
– e.g. glCompileShader()

● Shader performs calculations as part of 
graphics pipeline

● Runs calculations on GPU instead of CPU



  

What is a Shader Language?
● Typically C/C++ like

– for, while, if, ... for control flow
– Adds special types like vec4 (4 component 

vector) and mat4 (4x4 matrix) and operators
– Predefined variables used to get data 

(gl_Vertex) and return result (gl_Position)
● Simplifies and extends C/C++ for 

efficiency
– Matrix & vector operations supported in 

hardware Graphics Processing Unit (GPU)
– Built-in functions like normal, blend, etc.



  

GL Shader Language (GLSL)
● Often call “GLSLang”
● Added to OpenGL 2.0

– First appeared as extension in OpenGL 1.4
– Can be accessed in older versions using 

extentions
– GL Extension Wrangler (GLEW) often used

● Geared to real time graphics
– Inserted into OpenGL pipeline
– Vertex Shader to manipulate vertexes
– Fragment Shader to manipulate pixels



  

OpenGL Verions
● I will use different OpenGL versions depending 

on what is convenient for the problem at hand
– OpenGL 2.x

● Feature rich
● Flat learning curve
● Convenient in many applications

– OpenGL 4.x
● Somewhat different syntax
● Needed for advanced shaders

● OpenGL Core & Compatibility Profiles
● You can use whatever version you want



  

Where does GLSL fit?
● Vertex shader

– Transformations, color, texture 
coordinates, ...

● Fragment shader
– Textures, Color Interpolation, Fog, ...

● OpenGL still does Z-buffering, etc.



  

Fixed Pipeline Example



  

How is this different from what
we have done before?

● GLSL instructions can run on GPU
– Matrix-vector multiplications done fast

● Without GLSL we influence the pipeline 
using parameters and fixed operations
– Lighting calculated at vertexes
– Textures calculated at fragments
– Vertex-frament interpolation

● GL_SMOOTH bilinear interpolation
● GL_FLAT constant using last vertex

● With GLSL we can calculate values directly



  

How does this work with 
OpenGL?



  

Other Shader Languages
● RenderMan

– Lucasfilm - Pixar - Disney
● OpenGL Shader (ISL)

– SGI Interactive Shader Language
● High-Level Shader Language (HLSL)

– Microsoft DirectX 9
● NVIDIA's Cg

– proprietary shading language



  

RenderMan
● First practical shading language (1988)
● De-facto entertainment industry standard
● Remains in widespread use today
● Generally used for off-line rendering

– Uncompromising image quality
– Little hardware acceleration

● Credits:
– Jurassic Park, Star Wars Prequels, Lord of the Rings
– Toy Story, Finding Nemo, Monsters Inc, ...

● No relation to OpenGL in syntax or structure



  

The Rest (ISL, HLSL, Cg, ...)
● Syntax different but similar approach
● Generally similar in structure

– Vertex Shader
– Fragment Shader

● Geared towards real time graphics
– Hardware support
– Performance stressed



  

GLSL Versions
● GLSL 1.0 = OpenGL 1.4 (2002)

– The first portable shader
● GLSL 1.2 = OpenGL 2.0 (2004)

– The shader we will use
● GLSL 1.3 = OpenGL 3.0 (2008)

– Some changes in syntax
– Deprecates some features

● GLSL 3.3 = OpenGL 3.3
– From here on GLSL version match OpenGL

● Set minimum version using #version



  

GLSL 1.2 Variable Qualifiers
● const  (e.g. gl_MaxLights)

– compile-time constant [read-only]
● uniform (e.g. gl_ModelViewMatrix)

– input to vertex and fragment shader from 
OpenGL or application [read-only]

● attribute  (e.g. gl_Vertex)
– input per-vertex to vertex shader from 

OpenGL or application [read-only]
● varying  (e.g. gl_FrontColor)

– output from vertex shader [read-write], 
interpolated, then input to fragment shader 
[read-only]



  

GLSL 4 Variable Qualifiers
● const

– compile-time constant
● uniform

– data from CPU to shader
● in

– per-vertex input to vertex shader
– input from previous shader for others

● out
– resulting vertex and fragment properties
– output to next shader



  

The problem with shaders
● EXTREMELY hard to debug

– No “print” statements
● You have to have to most things yourself
● Support for latest features are spotty

– Needs GLEW on Windows
– Generally needs decent hardware

● So why use it?
– Ultimate flexibility
– Unsupported features (e.g. bump maps)
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