

CSCI 4239/5239
Advanced

Computer
 Graphics

Spring 2023

Instructor
● Willem A (Vlakkies) Schreüder
● Email: vlakkies@colorado.edu

– Begin subject with 4239 or 5239
– Resend email not answered promptly

● Office Hours:
– Monday 3-4pm by Zoom
– Thursday noon-1pm by Zoom or in ECOT 732
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm

Course Objectives
● Explore advanced topics in

 Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Assignments: Practical OpenGL
– Building useful applications
– Use GLFW to build programs

Course Organization
● Tuesday:

– Discussion of previous homework
– Presentations
– Volunteers and/or round robin

● Thursday: Introduction of next topic
– Lecture
– Example programs

Grading
● Homeworks 50%

– You may skip one homework
● Presentations & Participation 20%

– Homework and final project
● Semester project 30%

– Build a significant graphics application
● No formal tests or final
● Grade Ranges

A A- B+ B B- C+ C C- D+ D D- F
100 95 90 85 80 75 70 65 60 55 50 40 0

Assumptions
● You need to be fluent in C/C++

– Examples are in C or C++
– You can do assignments in any language

● I may need help getting it to work on my system
● You need to be comfortable with OpenGL

– CSCI 4229/5229 or equivalent
– You need a working OpenGL environment

Class Attendance
● Attendance is expected

– I don’t typically take attendance
● More of a seminar than a lecture

– Participation is important
– Mute your microphone when on Zoom
– Have your video on, expecially when talking

● If you are sick stay home
– Zoom lectures are recorded
– Catch up if you miss class

Grading Expectations
● Satisfactory complete all assignments => A

– The goal is to impress your friends
● Assignments must be submitted on time

unless prior arrangements are made
– Due by 23:59 Monday or Wednesday evening
– No penalty grace period until Tuesday or

Thursday morning at 8:00am
● Assignments must be completed individually

– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● Grade <100 means not satisfactory (not A)

Code Reuse
● Code from the internet or class may be used

– You take responsibility for any bugs in the code
● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Submitting code without crediting the
source is violation of the CU honor code

● The assignment is a minimum requirement

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs
– Clean code

● Clean out unused code
● Good code organization
● Appropriate to the problem at hand
● See Expectations on Canvas
● You need to understand every line

Text
● OpenGL Programming Guide (9ed)

– Kessenich, Sellers & Schreiner
– “OpenGL Vermillion Book”
– Implementing Shaders using GLSL
– Don't get an older edition

● Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required

Other Texts
● OpenGL SuperBible: Comprehensive Tutorial

and Reference (7ed)
– Sellers, Wright & Haemel
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples

Other Texts
● OpenGL ES 3.0 Programming Guide

– Ginsburg & Purnomo
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● WebGL Programming Guide
– Matsuda & Lea

Other Texts
● Programming Massively Parallel Processors

– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples

Other Texts
● Advanced Graphics Programming Using

OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced

topics
● Physically Based Rendering

– Pharr, Jakob and Humpfreys
– Only for PBRT homework
– 3rd edition for PBRTv3

OpenGL Resources
● www.google.com

– Need I say more?
● www.opengl.org

– Code and tutorials
● nehe.gamedev.net

www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229

Assignment 0
● Due: Wednesday Jan 18 by 23:59
● Check your Canvas notification settings

– Set notifications to immediate
● Submit

– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)
– Does office hours work for you?
– Distance students let me know about attendance

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran, Perl & Python
● Outside interests

– Aviation
– Amateur radio

Hardware Requirements
● You need hardware that will run shaders well

– Integrated graphics may be marginal
– Graphics cards from the last 5 years should be OK
– GPU computing needs high end hardware
– A VM is probably not going to cut it

● Try on different hardware
– AMD/nVidia/Intel sometimes behave differently
– I have nVidia hardware

Examples use glfw
● Why drop GLUT?

– Apple support for GLUT is waning
– It is easy to use, but limited capabilities

● Why glfw
– It is cross platform: Linux/WinX/OSX/iOS/...
– Very light weight wrapper to OpenGL
– Does not do sound, load images, etc
– Actively being developed (Vulcan is coming...)

● Can I use SDL or another wrapper?
– As long as it is cross platform

OpenGL Extension Wrangler
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– See Canvas for installation instructions

Installing glfw
● http://www.glfw.org/
● Ubuntu:

– apt-get install glfw3-dev
● OSX

– Install Xcode with command line tools
– Install homebrew
– Install toolchain, glfw and glew

● Windows
– Install MSYS2/MinGW
– Install toolchain, glfw and glew with pacman

CSCIx239 Library
● Includes GLFW and GLEW headers
● Many convenience functions

– InitWindow starts GLFW and GLEW
– Projection, Print, Fatal, ErrCheck, ...
– Load textures and OBJs
– Simple objects (Cube, Sphere, ...)
– Compile Shaders
– Matrix operations
– Performance (FPS, elapsed)

● Make sure you know what it does

Assignment 1
● Due: Monday January 23
● NDC to RGB shader

– For every point on the objects, the color
should be determined by its position in
normalized device coordinates

● The goal is to make this as short and
elegant as possible
– Shader Golf
– Figure this out for yourself
– Make every operation count

● Test your toolchain

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 22.04.1 LTS
– Ubuntu provides glfw 3.3

● Submit using Canvas
– ZIP without creating an extra folder
– Name projects hw1, hw2, … (lower case)
– Include all source code, makefile and data files
– Set window title to Homework X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if

requested

Project
● Should be a program with a significant

graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Wednesday March 22
– Progress: Wednesday April 12
– Review: Monday April 24
– Final: Wednesday May 3

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on another machine
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...

Class Discussions
● If have a special interest in the topic and

have something special to contribute
VOLUNTEER to lead the discussion

● If there are no volunteers, I will appoint
volunteers some on a round robin basis
(in order by MD5 of names)
– You can trade places, but you are

responsible for arranging a substitute
● You must present homework at least

twice, but you can do more if you want
● Popular topics may have more presenters

What to Present
● Should be (mostly) the assigned topic

– Rabbit holes can be very interesting
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting

How to Present
● 20 minutes can be forever or over in a wink

– Plan your time (practice out load)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions

How to Listen
● If you don't understand, ask

– Helps the presenter understand what is new
to you

● If you disagree, say so
– Maybe the presenter misspoke or has an

different opinion worth discussing
● Be nice – you may be next!

Zoom Etiquette
● Try to arrange a quiet background
● Mute your audio when joining Zoom
● Turn on video when talking

– Leave your video on at other times if you can
● Interrupt me if I miss your chat question

What is a Shader?
● A shader is a computer program that runs on the

GPU to calculate the properties of vertexes, pixels
and other graphical processing

● Examples:
– Vertex position or color computed by a program
– Texture generated by a program
– Per-pixel lighting
– Image processing
– Cartoon shading

How does a shader work?
● Shader Language used to specify

operations
– RenderMan, ISL, HLSL, Cg, GLSL

● Compile instructions into program
– e.g. glCompileShader()

● Shader performs calculations as part of
graphics pipeline

● Runs calculations on GPU instead of CPU

What is a Shader Language?
● Typically C/C++ like

– for, while, if, ... for control flow
– Adds special types like vec4 (4 component

vector) and mat4 (4x4 matrix) and operators
– Predefined variables used to get data

(gl_Vertex) and return result (gl_Position)
● Simplifies and extends C/C++ for

efficiency
– Matrix & vector operations supported in

hardware Graphics Processing Unit (GPU)
– Built-in functions like normal, blend, etc.

GL Shader Language (GLSL)
● Often call “GLSLang”
● Added to OpenGL 2.0

– First appeared as extension in OpenGL 1.4
– Can be accessed in older versions using

extentions
– GL Extension Wrangler (GLEW) often used

● Geared to real time graphics
– Inserted into OpenGL pipeline
– Vertex Shader to manipulate vertexes
– Fragment Shader to manipulate pixels

OpenGL Verions
● I will use different OpenGL versions depending

on what is convenient for the problem at hand
– OpenGL 2.x

● Feature rich
● Flat learning curve
● Convenient in many applications

– OpenGL 4.x
● Somewhat different syntax
● Needed for advanced shaders

● OpenGL Core & Compatibility Profiles
● You can use whatever version you want

Where does GLSL fit?
● Vertex shader

– Transformations, color, texture
coordinates, ...

● Fragment shader
– Textures, Color Interpolation, Fog, ...

● OpenGL still does Z-buffering, etc.

Fixed Pipeline Example

How is this different from what
we have done before?

● GLSL instructions can run on GPU
– Matrix-vector multiplications done fast

● Without GLSL we influence the pipeline
using parameters and fixed operations
– Lighting calculated at vertexes
– Textures calculated at fragments
– Vertex-frament interpolation

● GL_SMOOTH bilinear interpolation
● GL_FLAT constant using last vertex

● With GLSL we can calculate values directly

How does this work with
OpenGL?

Other Shader Languages
● RenderMan

– Lucasfilm - Pixar - Disney
● OpenGL Shader (ISL)

– SGI Interactive Shader Language
● High-Level Shader Language (HLSL)

– Microsoft DirectX 9
● NVIDIA's Cg

– proprietary shading language

RenderMan
● First practical shading language (1988)
● De-facto entertainment industry standard
● Remains in widespread use today
● Generally used for off-line rendering

– Uncompromising image quality
– Little hardware acceleration

● Credits:
– Jurassic Park, Star Wars Prequels, Lord of the Rings
– Toy Story, Finding Nemo, Monsters Inc, ...

● No relation to OpenGL in syntax or structure

The Rest (ISL, HLSL, Cg, ...)
● Syntax different but similar approach
● Generally similar in structure

– Vertex Shader
– Fragment Shader

● Geared towards real time graphics
– Hardware support
– Performance stressed

GLSL Versions
● GLSL 1.0 = OpenGL 1.4 (2002)

– The first portable shader
● GLSL 1.2 = OpenGL 2.0 (2004)

– The shader we will use
● GLSL 1.3 = OpenGL 3.0 (2008)

– Some changes in syntax
– Deprecates some features

● GLSL 3.3 = OpenGL 3.3
– From here on GLSL version match OpenGL

● Set minimum version using #version

GLSL 1.2 Variable Qualifiers
● const (e.g. gl_MaxLights)

– compile-time constant [read-only]
● uniform (e.g. gl_ModelViewMatrix)

– input to vertex and fragment shader from
OpenGL or application [read-only]

● attribute (e.g. gl_Vertex)
– input per-vertex to vertex shader from

OpenGL or application [read-only]
● varying (e.g. gl_FrontColor)

– output from vertex shader [read-write],
interpolated, then input to fragment shader
[read-only]

GLSL 4 Variable Qualifiers
● const

– compile-time constant
● uniform

– data from CPU to shader
● in

– per-vertex input to vertex shader
– input from previous shader for others

● out
– resulting vertex and fragment properties
– output to next shader

The problem with shaders
● EXTREMELY hard to debug

– No “print” statements
● You have to have to most things yourself
● Support for latest features are spotty

– Needs GLEW on Windows
– Generally needs decent hardware

● So why use it?
– Ultimate flexibility
– Unsupported features (e.g. bump maps)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

