

OpenGL 4 and
Vulkan

CSCI 4239/5239
Advanced Computer Graphics

Spring 2024

What is new in OpenGL 3&4
● Additional shaders

– Geometry (OpenGL 3.2)
– Tesselation (OpenGL 4.0)
– Compute (OpenGL 4.3)

● New syntax for passing variables
– “in” from previous stage
– “out” to next stage
– Deprecating most predefined variables

● Building objects from vertex arrays
● Deprecating OpenGL transformations

Deprecated Features
● glBegin() glEnd()

– Use vertex buffer objects instead
● glTranslate() glRotate() glScale()

– Use vmath or glm or roll your own
● Display lists
● Deprecated features remain available

through the compatibility profile, but are
not available in the core profile which is
common with OpenGL ES

Vertex Arrays
● Pass all the vertex values to OpenGL as a

single array of values rather than
numerous calls to glVertex, glColor, etc.

● Draw objects using glDrawArrays() or
glDrawElements()

Vertex Buffer Objects (VBO)
● Stored on the GPU
● Addressed analogous to textures

– glGenBuffers() - generate unique names
– glBindBuffer() - select buffer
– glBufferData() - copy data to buffer
– glBufferSubData() - copy partial data
– glEnableVertexAttribArray() - enable array
– glVertexAttribPointer() - map attribute

glVertexAttribPointer(index,size
,type,normalized,stride,pointer)
● index: 0,1,.. must match layout
● size: dimension of variable (1,2,3,4)
● type: variable type (e.g. GL_FLOAT)
● normalize: if true map integers to 0-1
● stride: bytes between data values
● pointer: offset of data values (in bytes)
● The data comes from the current vertex

buffer selected using glBindBuffer()
● Activate glEnableVertexAttribArray(index)

Vertex Array Objects (VAO)
● Stored on the GPU
● Remembers how the buffers and arrays

map so you don't have to do it again
● Create with glGenVertexArrays
● Apply with glBindVertexArray
● Added in GL3

OpenGL 3&4 Adoption
● On the desktop, you can do gradual

adoption
– OpenGL 3&4 style shaders with glBegin()
– VBOs with OpenGL 2 shaders
– The compatibility profile supports both

● With OpenGL ES it is all or nothing
– Smaller footprint
– Fewer legacy implementations

● Use whatever combination you want
– My examples use whatever is convenient

Vulkan
● Vulkan is what would have been GL5
● Breaks backwards compatibility, but

strongly resembles OpenGL
● Requires you to be very explicit
● Close to the metal, little abstractions
● Super verbose, very steep learning curve
● Requires tons of scaffolding

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

