

Introduction
to OpenGL

CSCI 4229/5229
Computer Graphics

Summer 2012

OpenGL by Example
● Learn OpenGL by reading
● nehe.gamedev.net

– Excellent free tutorial
– Code available for many platforms and

languages

● OpenGL: A Primer (3ed) by Edward Angel
– Short and sweet

● OpenGL Programming Guide (Red Book)
– Free older editions as PDF

● OpenGL Superbible
– Theory and Applications

What is OpenGL?
● Sometimes called a language, actually an

Application Programming Interface (API)
● Specification is controlled by OpenGL

Architecture Review Board (ARB)
● Multiple implementations by different

vendors
– Mesa & FreeGLUT free implementations

● OpenGL just does real time graphics
– Need GLX/WGL/AGL for windowing and input
– Limited font support (in GLUT)
– No sound, printing, etc. support

OpenGL Versions
1.0 Initial release (1992)

1.1 Major upgrade (1997)
– Lastest version on some Windows system

1.2 Improves textures (1998)

1.3-1.5 Incremental improvements (2001-2003)

2.0 Relaxes restrictions, adds shader (2004)

2.1-2.3 Incremental improvement (2006-7)

3.0 Support advanced hardware features (2008)

3.1-3.3 Improved shaders (2009)

4.0 Merge desktop and devices (2010)

4.1-4.2 Additional shaders

OpenGL Deprecation
● I will teach you OpenGL 2.0

– Feature rich
– Flat learning curve

● OpenGL Core Profile concentrates on
rendering

– Improved execution time performance

● User must provide deprecated functionality
– Steepens the learning curve
– Deprecated features in Compatibility Profile
– Increases reliance on third party libraries
– Adds development time until tools mature

OpenGL APIs
● Languages

– C, C++, C#
– FORTRAN
– Java
– Perl
– Python
– Ada

● Packages
– Qt (QGLWidget)
– SDL
– Many others

OpenGL and Friends

From OpenGL: A Primer

OpenGL on X11

From OpenGL: A Primer

GLU: OpenGL Utility

● Higher Level and Convenience Functions
– Projections
– Creating texture maps
– NURBS, quadrics, tessalation
– Predefined objects (sphere, cylinder, teapot)

● Collections of calls for convenience
● Standard with all OpenGL

implementations

GLUT: GL Utility Toolkit
● Provides access to OS and Window

System
– Open windows and setting size and

capabilities
– Register and triggers callbacks
– Keyboard and mouse interaction
– Elementary fonts

● Not part of OpenGL, but provides a
portable abstraction of the OS
– FreeGLUT
– OpenGLUT

● Alternatives: SDL, Qt, ...

Header Files and Libraries
● Usually you only need

– #define GL_GLEXT_PROTOTYPES
– #include <GL/glut.h>

● Header file locations
– /usr/include/GL on most systems

● Linking may only need
– -l glut -l GLU

● Special cases
– Some unices put OpenGL in /usr/X11R6
– OS/X separates GL and GLUT
– Windows differs depending on the compiler

OpenGL Naming Convention
● glDoSomethingXy()

– DoSomething is the name of the function
– X is 2 or 3 or 4 for the dimension
– y is for the the variable type

● b GLbyte (signed char) 8 bit
● s GLshort (signed short) 16 bit
● i GLint (signed int) 32 bit
● ub GLubyte (unsigned char) 8 bit
● us GLushort (unsigned short) 16 bit
● ui GLuint (unsigned int) 32 bit
● f GLfloat (float) 32 bit
● d GLdouble (double) 64 bit

OpenGL Naming Example

● Vertex
– glVertex3i(0 , 0 , 1)
– glVertex2d(27.34 , 88.12)
– glVertex3dv(array)

● Few functions return a value
● Most functions created by name mangling
● Constants are GL_SOMETHING
● Variable types are GLsomething

GLUT and GLU Naming

● Functions
– glutDoSomething
– gluDoSomething

● Constants
– GLUT_SOMETHING
– GLU_SOMETHING

● You can always tell by the name which
API supplies a function or constant

● Avoid things starting with glx, wgl & agl

GLUT: GL Utility Toolkit

● Supplies interface to OS
– Windowing
– Interaction

● Hello World in GLUT (well sorta)
int main(int argc,char* argv[])

{

 glutInit(&argc,argv);

 glutCreateWindow(“Hello World”);

 glutDisplayFunc(display);

 glutMainLoop();

}

Completing Hello World

● Draw a triangle
#include <GL/glut.h>

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 glVertex2f(0.0,0.5);

 glVertex2f(0.5,-0.5);

 glVertex2f(-0.5,-0.5);

 glEnd();

 glFlush();

}

Compile, link and run

● cc -o helloworld helloworld.c -lglut
● Heavily relies on defaults

– Window
– Viewport
– Projection
– Color

Event Driven Programming

● Don't call us, we'll call you
– register callbacks corresponding to events
– similar to interrupt driven programs

● DO NOT explicitly call display()
– request redisplay using glutPostRedisplay()

● NEVER call sleep()
– use global/static variables and wall time for

timing
– use glutTimerFunc() for regular events

● Return control as soon as possible

Types of Objects
● glBegin(type)

– GL_POINTS points
– GL_LINES lines between pairs of points
– GL_LINE_STRIP series of line segments
– GL_LINE_LOOP closed GL_LINE_STRIP
– GL_POLYGON simple polygon
– GL_TRIANGLES triangles between triples of

points
– GL_TRIANGLE_STRIP series of triangles
– GL_TRIANGLE_FAN fan of triangles

● Set coordinates with glVertex
● glEnd()

Qualifiers

● glPointSize(float size)
– POINT size in pixels (default 1)

● glLineWidth(float width)
– LINE width in pixels (default 1)

● glLineStipple(int factor,unsigned short pattern)
– LINE type
– Requires glEnable(GL_LINE_STIPPLE)

Color
● Default is RGB color

– X11 TrueColor
– R,G,B 0-1 or integer range

● glColor3f(1.0 , 0.0 .0.0)
● glColor3b(127 , 0 , 0);
● glColor3ub(255 , 0 , 0);
● glColor3fv(rgbarray);

● Color can also contain transparency
(alpha)
– glColor4f(1.0 , 0.0 . 0.0 , 0.5);
– Default alpha=1 (opaque)

● Stays in effect until you change color

Indexed Color
● X11 Direct Color

– Based on a colormap

● Set color using glIndexi(27)
● Need to load colors into color map using

glutSetColor()
● Use RGB color unless hardware

constraine
● Deprecated in OpenGL 3 since it really is

obsolete

Displaying a scene

● Register using glutDisplayFunc()
● glClear()
● Draw Something
● glFlush()
● glutSwapBuffers()
● Schedule using glutPostRedisplay()

Transformations

● Transformation apply to everything that
follows

● Transformations are cumulative
– Call glLoadIdentity() in display()

● Primitive operations
– glLoadIdentity();
– glTranslate[fd](dx , dy , dz)
– glScale[fd](Sx , Sy , Sz)
– glRotate[fd](angle , Ux , Uy , Uz)

● Compatibility profile in OpenGL4 still useful

glTranslate[fd](dx , dy , dz);

● Move an object in three dimensions
● Allows you to easily produce multiple

copies of an object
● Always takes 3D coordinates (float or

double)

glScale[fd](Sx , Sy , Sz)

● Change the scale along the axes
● Multiplicative factors

– |S|<1 shrink
– |S|>1 expand
– Negative values creates mirror image

● Allows you to easily create multiple
copies of the same type at different sizes

glRotate[fd](angle , Ux , Uy , Uz)

● Rotates around the origin and axis
(Ux,Uy,Uz)

● Angle is measured in degrees
● The axis can be a primary axis (X,Y,Z) but

may be axis
● Allows you to create multiple copies of

the same object viewed from different
sides, or to view the scene from different
positions

Temporary Transformations

● glPushMatrix()
– Saves the current transformation

● glPopMatrix()
– Resets the transformation to what it was

when you did the push

● Allows you to build complex
transformations and then get them back

Compound Transformations

● Rotate angle around the point (X,Y,Z) and
axis (Ux,Uy,Uz)
– glTranslated(-X,-Y,-Z)
– glRotated(angle,Ux,Uy,Uz)
– glTranslated(X,Y,Z)

● OpenGL does this intelligently

Projections

● Orthographic
– glOrtho(left,right,bottom,top,near,far)
– Same size regardless of distance
– Easiest to use

● Perspective
– glFrustrum(left,right,bottom,top,near,far)
– Closer objects are bigger
– GLU convenience functions

● gluPerspective(fov,aspect,Znear,Zfar)
● gluLookAt(Ex,Ey,Ez , Cx,Cy,Cz , Ux,Uy,Uz)

Text

● OpenGL provides only hooks for fonts
● Stroked fonts

– Lines and fills write the characters

● Bitmap (raster) fonts
– Characters are raster images

● Orientation, size, etc. treated just like any
other drawing elements

Text using GLUT

● glutBitmapCharacter(GLUT_FONTTYPE,ch)
– Single charcter
– Limited font selection

● glRasterPos3d(x,y,z)
– Sets position to write text in (x,y,z)

coordinates

● glWindowPos2i(x,y)
– Sets position to write text in pixels

coordinates

Registering Callbacks
● Display

– glutDisplayFunc() Draw the scene
– glutReshapeFunc() Window resized
– glutIdleFunc() Nothing more

scheduled

● User input
– glutKeyboardFunc() Key pressed
– glutSpecialFunc() Special key pressed
– glutMouseFunc() Mouse button
– glutMotionFunc() Mouse motion

● Many more

Keyboard Input

● special(int key,int x,int y)
– Cursor keys GLUT_KEY_LEFT, GLUT_KEY_UP,...
– Function keys GLUT_KEY_Fx
– Basically anything not an ASCII key

● keyboard(char ch,int x,int y)
– Regular keystrokes

● (x,y) is the mouse position in pixels

Setting Modes

● glutInitDisplayMode
– Interfaces with the window manager to get the

right kind of window (BE CAREFUL ABOUT
DEFAULTS)

● glEnable() & glDisable()
– Switches OpenGL into various modes

● GL_DEPTH_TEST
● GL_ALPHA_TEST
● GL_CULL_FACE
● GL_LIGHTING

– Different modes for different objects

Checking for Errors

● OpenGL fails silently
● Functions do not return an error code
● glGetError() must be called explicitly to

check for errors
● A black screen is a sure signal of an error

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

