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OpenGL by Example
● Learn OpenGL by reading
● nehe.gamedev.net

– Excellent free tutorial
– Code available for many platforms and 

languages

● OpenGL: A Primer (3ed) by Edward Angel
– Short and sweet

● OpenGL Programming Guide (Red Book)
– Free older editions as PDF

● OpenGL Superbible
– Theory and Applications



   

What is OpenGL?
● Sometimes called a language, actually an 

Application Programming Interface (API)
● Specification is controlled by OpenGL 

Architecture Review Board (ARB)
● Multiple implementations by different 

vendors
– Mesa & FreeGLUT free implementations

● OpenGL just does real time graphics
– Need GLX/WGL/AGL for windowing and input
– Limited font support (in GLUT)
– No sound, printing, etc. support



   

OpenGL Versions
1.0 Initial release (1992)

1.1 Major upgrade (1997)
– Lastest version on some Windows system

1.2 Improves textures (1998)

1.3-1.5 Incremental improvements (2001-2003) 

2.0 Relaxes restrictions, adds shader (2004)

2.1-2.3 Incremental improvement (2006-7)

3.0 Support advanced hardware features (2008)

3.1-3.3  Improved shaders (2009)

4.0  Merge desktop and devices (2010)

4.1-4.2  Additional shaders



   

OpenGL Deprecation
● I will teach you OpenGL 2.0

– Feature rich
– Flat learning curve

● OpenGL Core Profile concentrates on 
rendering

– Improved execution time performance

● User must provide deprecated functionality
– Steepens the learning curve
– Deprecated features in Compatibility Profile
– Increases reliance on third party libraries
– Adds development time until tools mature



   

OpenGL APIs
● Languages

– C, C++, C#
– FORTRAN
– Java
– Perl
– Python
– Ada

● Packages
– Qt (QGLWidget)
– SDL
– Many others



   

OpenGL and Friends

From OpenGL: A Primer



   

OpenGL on X11

From OpenGL: A Primer



   

GLU: OpenGL Utility

● Higher Level and Convenience Functions
– Projections
– Creating texture maps
– NURBS, quadrics, tessalation
– Predefined objects (sphere, cylinder, teapot)

● Collections of calls for convenience
● Standard with all OpenGL 

implementations



   

GLUT: GL Utility Toolkit
● Provides access to OS and Window 

System
– Open windows and setting size and 

capabilities
– Register and triggers callbacks
– Keyboard and mouse interaction
– Elementary fonts

● Not part of OpenGL, but provides a 
portable abstraction of the OS
– FreeGLUT
– OpenGLUT

● Alternatives:  SDL, Qt, ...



   

Header Files and Libraries
● Usually you only need

– #define GL_GLEXT_PROTOTYPES
– #include <GL/glut.h>

● Header file locations
– /usr/include/GL on most systems

● Linking may only need
– -l glut -l GLU

● Special cases
– Some unices put OpenGL in /usr/X11R6
– OS/X separates GL and GLUT
– Windows differs depending on the compiler



   

OpenGL Naming Convention
● glDoSomethingXy()

– DoSomething is the name of the function
– X is 2 or 3 or 4 for the dimension
– y is for the the variable type

● b GLbyte (signed char) 8 bit
● s GLshort (signed short) 16 bit
● i GLint (signed int) 32 bit
● ub GLubyte (unsigned char) 8 bit
● us GLushort (unsigned short) 16 bit
● ui GLuint (unsigned int) 32 bit
● f GLfloat (float) 32 bit
● d GLdouble (double) 64 bit



   

OpenGL Naming Example

● Vertex
– glVertex3i(0 , 0 , 1)
– glVertex2d(27.34 , 88.12)
– glVertex3dv(array)

● Few functions return a value
● Most functions created by name mangling
● Constants are GL_SOMETHING
● Variable types are GLsomething



   

GLUT and GLU Naming

● Functions
– glutDoSomething
– gluDoSomething

● Constants
– GLUT_SOMETHING
– GLU_SOMETHING

● You can always tell by the name which 
API supplies a function or constant

● Avoid things starting with glx, wgl & agl



   

GLUT: GL Utility Toolkit

● Supplies interface to OS
– Windowing
– Interaction

● Hello World in GLUT (well sorta)
int main(int argc,char* argv[ ])

{

   glutInit(&argc,argv);

   glutCreateWindow(“Hello World”);

   glutDisplayFunc(display);

   glutMainLoop();

}



   

Completing Hello World

● Draw a triangle
#include <GL/glut.h>

void display()

{

   glClear(GL_COLOR_BUFFER_BIT);

   glBegin(GL_POLYGON);

   glVertex2f(0.0,0.5);

   glVertex2f(0.5,-0.5);

   glVertex2f(-0.5,-0.5);

   glEnd();

   glFlush();

}



   

Compile, link and run

● cc -o helloworld helloworld.c -lglut
● Heavily relies on defaults

– Window
– Viewport
– Projection
– Color



   

Event Driven Programming

● Don't call us, we'll call you
– register callbacks corresponding to events
– similar to interrupt driven programs

● DO NOT explicitly call display()
– request redisplay using glutPostRedisplay()

● NEVER call sleep()
– use global/static variables and wall time for 

timing
– use glutTimerFunc() for regular events

● Return control as soon as possible



   

Types of Objects
● glBegin(type)

– GL_POINTS  points
– GL_LINES lines between pairs of points
– GL_LINE_STRIP   series of line segments
– GL_LINE_LOOP   closed GL_LINE_STRIP
– GL_POLYGON  simple polygon
– GL_TRIANGLES  triangles between triples of 

points
– GL_TRIANGLE_STRIP  series of triangles
– GL_TRIANGLE_FAN  fan of triangles

● Set coordinates with glVertex
● glEnd()



   

Qualifiers

● glPointSize(float size)
– POINT size in pixels (default 1)

● glLineWidth(float width)
– LINE width in pixels (default 1)

● glLineStipple(int factor,unsigned short pattern)
– LINE type
– Requires glEnable(GL_LINE_STIPPLE)



   

Color
● Default is RGB color

– X11 TrueColor
– R,G,B  0-1 or integer range

● glColor3f(1.0 , 0.0 .0.0)
● glColor3b(127 , 0 , 0);
● glColor3ub(255 , 0 , 0);
● glColor3fv(rgbarray);

● Color can also contain transparency 
(alpha)
– glColor4f(1.0 , 0.0 . 0.0 , 0.5);
– Default alpha=1 (opaque)

● Stays in effect until you change color



   

Indexed Color
● X11 Direct Color

– Based on a colormap

● Set color using   glIndexi(27)
● Need to load colors into color map using 

glutSetColor()
● Use RGB color unless hardware 

constraine
● Deprecated in OpenGL 3 since it really is 

obsolete



   

Displaying a scene

● Register using glutDisplayFunc()
● glClear()
● Draw Something
● glFlush()
● glutSwapBuffers()
● Schedule using glutPostRedisplay()



   

Transformations

● Transformation apply to everything that 
follows

● Transformations are cumulative
– Call glLoadIdentity() in display()

● Primitive operations
– glLoadIdentity();
– glTranslate[fd](dx , dy , dz)
– glScale[fd](Sx , Sy , Sz) 
– glRotate[fd](angle , Ux , Uy , Uz)

● Compatibility profile in OpenGL4 still useful



   

glTranslate[fd](dx , dy , dz);

● Move an object in three dimensions
● Allows you to easily produce multiple 

copies of an object
● Always takes 3D coordinates (float or 

double)



   

glScale[fd](Sx , Sy , Sz)

● Change the scale along the axes
● Multiplicative factors

– |S|<1 shrink
– |S|>1 expand
– Negative values creates mirror image

● Allows you to easily create multiple 
copies of the same type at different sizes



   

glRotate[fd](angle , Ux , Uy , Uz)

● Rotates around the origin and axis 
(Ux,Uy,Uz)

● Angle is measured in degrees
● The axis can be a primary axis (X,Y,Z) but 

may be axis
● Allows you to create multiple copies of 

the same object viewed from different 
sides, or to view the scene from different 
positions



   

Temporary Transformations

● glPushMatrix()
– Saves the current transformation

● glPopMatrix()
– Resets the transformation to what it was 

when you did the push

● Allows you to build complex 
transformations and then get them back



   

Compound Transformations

● Rotate angle around the point (X,Y,Z) and 
axis (Ux,Uy,Uz)
– glTranslated(-X,-Y,-Z)
– glRotated(angle,Ux,Uy,Uz)
– glTranslated(X,Y,Z)

● OpenGL does this intelligently



   

Projections

● Orthographic
– glOrtho(left,right,bottom,top,near,far)
– Same size regardless of distance
– Easiest to use

● Perspective
– glFrustrum(left,right,bottom,top,near,far)
– Closer objects are bigger
– GLU convenience functions

● gluPerspective(fov,aspect,Znear,Zfar)
● gluLookAt(Ex,Ey,Ez , Cx,Cy,Cz , Ux,Uy,Uz)



   

Text

● OpenGL provides only hooks for fonts
● Stroked fonts

– Lines and fills write the characters

● Bitmap (raster) fonts
– Characters are raster images

● Orientation, size, etc. treated just like any 
other drawing elements



   

Text using GLUT

● glutBitmapCharacter(GLUT_FONTTYPE,ch)
– Single charcter
– Limited font selection

● glRasterPos3d(x,y,z)
– Sets position to write text in (x,y,z) 

coordinates

● glWindowPos2i(x,y)
– Sets position to write text in pixels 

coordinates



   

Registering Callbacks
● Display

– glutDisplayFunc() Draw the scene
– glutReshapeFunc() Window resized
– glutIdleFunc() Nothing more 

scheduled

● User input
– glutKeyboardFunc() Key pressed
– glutSpecialFunc() Special key pressed
– glutMouseFunc() Mouse button
– glutMotionFunc() Mouse motion

● Many more



   

Keyboard Input

● special(int key,int x,int y)
– Cursor keys GLUT_KEY_LEFT, GLUT_KEY_UP,...
– Function keys GLUT_KEY_Fx
– Basically anything not an ASCII key

● keyboard(char ch,int x,int y)
– Regular keystrokes

● (x,y) is the mouse position in pixels



   

Setting Modes

● glutInitDisplayMode
– Interfaces with the window manager to get the 

right kind of window  (BE CAREFUL ABOUT 
DEFAULTS)

● glEnable() & glDisable()
– Switches OpenGL into various modes

● GL_DEPTH_TEST
● GL_ALPHA_TEST
● GL_CULL_FACE
● GL_LIGHTING

– Different modes for different objects



   

Checking for Errors

● OpenGL fails silently
● Functions do not return an error code
● glGetError() must be called explicitly to 

check for errors
● A black screen is a sure signal of an error
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