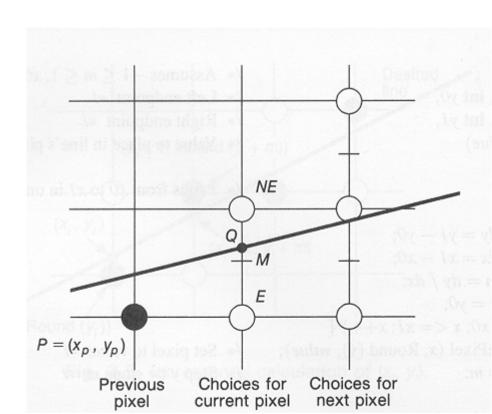
Drawing Lines & Anti-Aliasing

CSCI 4229/5229
Computer Graphics
Summer 2016

Scan Converting Lines

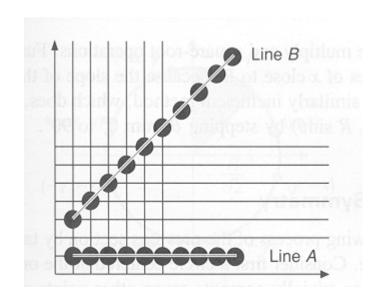
- Which pixels to turn on?
 - Floating point
 - Bresenham algorithm

Floating Point Algorithm

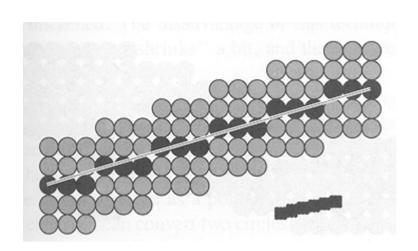

Functional form

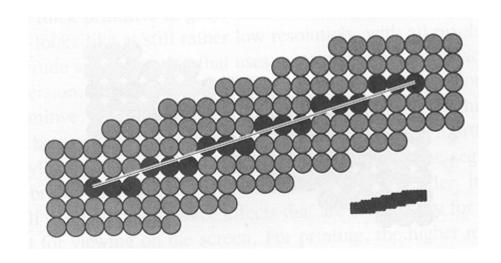
$$y = (x-x_0)(y_1-y_0)/(x_1-x_0)+y_0$$
 (use when $|y_1-y_0|<|x_1-x_0|$)
 $x = (y-y_0)(x_1-x_0)/(y_1-y_0)+x_0$ (use when $|x_1-x_0|<|y_1-y_0|$)

- Evaluate y or x at integral values of x or y
- Round result to nearest integer to decide pixel
- Slow
 - integer -> float
 - float multiply and two float additions
 - float -> integer

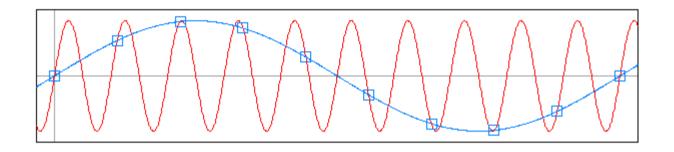

Bresenham Algorithm

- Select next pixel from two choices: E or NE
 - Only works when slope is <=1
 - Is midpoint above or below the line?
- All integer operations
 - One or two adds


Line intensity

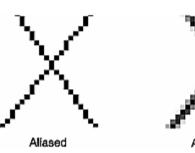

- Lines parallel to axes appear more dense than lines at 45 degree angles by √2
- If this is an issue you can adjust the pixel intensity inversely proportional to the cosine

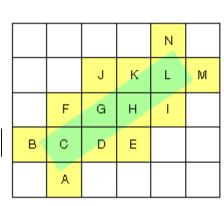
Thick Lines


- Column replication
- Rectangular pen
- Polygon fill

Anti-aliasing in signal processing

Discrete samples of a signal


Low and high frequency samples are the same


Anti-aliasing in Computer Graphics

- Aliased lines
 - Discrete pixels are turned on
 - Nearest pixel selected
 - Leads to "jaggies"

- Pixels are partially turned on
- Level selected by line overla
- Leads to smoother lines

A .040510 B .040510 C .878469 D .434259 E .007639 F .141435 G .759952 H .759952 J .007639 K .434259 L .878469 M .040510 N .040510

OpenGL Anti-aliased Lines

- glEnable(GL_LINE_SMOOTH);
- glEnable(GL_BLEND);
- glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
- glLineWidth(1.5);