

Shaders
CSCI 4229/5229

Advanced Computer Graphics
Summer 2018

What is a Shader?

● A shader is a computer program that runs on the
GPU to calculate the properties of vertexes, pixels
and other graphical processing

● Examples:

– Vertex position or color computed by a program
– Texture generated by a program
– Per-pixel lighting
– Image processing
– Cartoon shading

How does a shader work?

● Shader Language used to specify
operations
– RenderMan, ISL, HLSL, Cg, GLSL

● Compile instructions into program
– e.g. glCompileShader()

● Shader performs calculations as part of
graphics pipeline

● Runs calculations on GPU instead of CPU

What is a Shader Language?

● Typically C/C++ like
– for, while, if, ... for control flow
– Adds special types like vec4 (4 component

vector) and mat4 (4x4 matrix) and operators
– Predefined variables used to get data

(gl_Vertex) and return result (gl_Position)

● Simplifies and extends C/C++ for
efficiency
– Matrix & vector operations supported in

hardware Graphics Processing Unit (GPU)
– Built-in functions like normal, blend, etc.

GL Shader Language (GLSL)
● Often call “GLSLang”
● Added to OpenGL 2.0

– First appeared as extension in OpenGL 1.4
– Can be accessed in older versions using

extentions
– GL Extension Wrangler (GLEW) often used

● Geared to real time graphics
– Inserted into OpenGL pipeline
– Vertex Shader to manipulate vertexes
– Fragment Shader to manipulate pixels

GLSL Resources
● OpenGL Programming Guide (8ed)

– Merges the old Red and Orange books
– Don't get older editions

● GLSL Quick Reference
– “Cheat sheet”

● Many online references
– http://www.lighthouse3d.com/opengl/glsl/
– Watch out for old stuff (OpenGL < 2)
– Don't be confused by newest stuff (OpenGL 4)

http://www.lighthouse3d.com/opengl/glsl/

OpenGL Deprecation
● I will mostly use OpenGL 2.x

– Feature rich
– Flat learning curve
– More advanced examples will use 3.x and 4.x

● OpenGL Core Profile concentrates on rendering
– Improved execution time performance

● User must provide deprecated functionality
– Steepens the learning curve
– Deprecated features in Compatibility Profile
– Increases reliance on third party libraries

Where does GLSL fit?
● Vertex shader

– Transformations, color, texture
coordinates, ...

● Fragment shader
– Textures, Color Interpolation, Fog, ...

● OpenGL still does Z-buffering, etc.

Fixed Pipeline Example

How is this different from what
we have done before?

● GLSL instructions can run on GPU
– Matrix-vector multiplications done fast

● Without GLSL we influence the pipeline
using parameters and fixed operations
– Lighting calculated at vertexes
– Textures calculated at fragments
– Vertex-frament interpolation

● GL_SMOOTH bilinear interpolation
● GL_FLAT constant using last vertex

● With GLSL we can calculate values directly

How does this work with
OpenGL?

Other Shader Languages

● RenderMan
– Lucasfilm - Pixar - Disney

● OpenGL Shader (ISL)
– SGI Interactive Shader Language

● High-Level Shader Language (HLSL)
– Microsoft DirectX 9

● NVIDIA's Cg
– proprietary shading language

RenderMan

● First practical shading language (1988)
● De-facto entertainment industry standard
● Remains in widespread use today
● Generally used for off-line rendering

– Uncompromising image quality
– Little hardware acceleration

● Credits:
– Jurassic Park, Star Wars Prequels, Lord of the Rings
– Toy Story, Finding Nemo, Monsters Inc, ...

● No relation to OpenGL in syntax or structure

The Rest (ISL, HLSL, Cg, ...)

● Syntax different but similar approach
● Generally similar in structure

– Vertex Shader
– Fragment Shader

● Geared towards real time graphics
– Hardware support
– Performance stressed

GLSL Versions
● GLSL 1.0 = OpenGL 1.4 (2002)

– The first portable shader

● GLSL 1.2 = OpenGL 2.0 (2004)
– The shader we will use

● GLSL 1.3 = OpenGL 3.0 (2008)
– Some changes in syntax
– Deprecates some features

● GLSL 3.3 = OpenGL 3.3
– From here on GLSL version match OpenGL

● Set minimum version using #version

GLSL Variable Qualifiers
● uniform (e.g. gl_ModelViewMatrix)

– input to vertex and fragment shader from
OpenGL or application [read-only]

● attribute (e.g. gl_Vertex)
– input per-vertex to vertex shader from

OpenGL or application [read-only]

● varying (e.g. gl_FrontColor)
– output from vertex shader [read-write],

interpolated, then input to fragment shader
[read-only]

● const (e.g. gl_MaxLights)
– compile-time constant [read-only]

The problem with shaders
● EXTREMELY hard to debug

– No “print” statements

● You have to have to do lighting yourself
● Support is spotty

– GLSL requires OpenGL 2.0 or extensions
– Still somewhat a work in progress
– Generally needs decent hardware

● So why use it?
– Ultimate flexibility
– Unsupported features (e.g. bump maps)

OpenGL Extension Wrangler
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– See MinGW instructions on moodle

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

