Parametric Curves CSCI 4229/5229 Computer Graphics Summer 2022

Parametric Curves

- $x(t)=p_{x}(t), y(t)=p_{y}(t), z(t)=p_{z}(t), w(t)=p_{w}(t)$
- Often $p(t)$ is a polynomial
- Generally t in $[0,1]$
- Avoids problems such as lines parallel to axes
- Works for any number of dimensions
- Can be used to generate vertexes, colors, texture coordinates, normals, etc.

Bernstein Polynomials

- Bernstein Polynomials
$\left.-B_{i}^{n}(t)=i_{i}^{n}\right) t^{\prime}(1-t)^{n-i}$
- Sums to one $\sum_{i=0}{ }^{n} B_{i}^{n}(t)=1$
- Cubic Bernstein Polynomials
$-B_{o}{ }^{3}(t)=(1-t)^{3}$
$-B_{1}{ }^{3}(t)=3 t(1-t)^{2}$
$-B_{2}{ }^{3}(t)=3 t^{2}(1-t)$
$-B_{3}{ }^{3}(t)=t^{3}$

Cubic Bernstein Polynomials

Bézier Curves

- $C_{n}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) P_{i}, \quad t \in[0,1]$
- P_{i} are points in 2D, 3D or 4D
- Convex linear combination of points P_{i}
- Entire curve is in convex hull of points $\left(\sum_{i=0}{ }^{n} B_{i}^{n}(t)=1\right)$
- $B_{o}{ }^{n}(0)=1$, so starts at P_{0}
- $B_{n}^{n}(1)=1$, so ends at P_{n}
- Tangential to $P_{0}-P_{1}$ and $P_{n}-P_{n-1}$
- Curve is smooth and differentiable

Curves in OpenGL

- One-dimensional Evaluators
- Can be used to generate vertexes, normals, colors and textures
- Curve defined analytically using Bezier curves
- Evaluated at discrete points and rendered using straight line segments

Curves in OpenGL

- glEnable()
- Enables types of data to generate
- glMap1d()
- Defines control points and domain
- glEvalCoord1d()
- Generates a data point
- glMapGrid1d() \& glEvalMesh1()
- Generates a series of data points
- Deprecated in OpenGL (do this manually)

glMap1d(type,Umin,Umax,stride,order,points)

- type of data to generate
- GL_MAP1_VERTEX_[34]
- GL_MAP1_NORMAL
- GL_MAP1_COLOR_4
- GL_MAP1_TEXTURE_COORD_[1-4]
- Umin\&Umax are limits of parameter(often0\&1)
- stride is the number of coordinates in data (3 or 4)
- order is the order of the curve ($4=$ cubic)
- points is the array of data points
- Remember to also call gIEnable()

glEvalCoord1d(u)

- Generate one vertex for each gIMap1d() type currently active (e.g. texture, normal, vertex)
- To generate the whole curve, call gIEvalCoord1d() once for each vertex
- Exercise entire parameter space
- u from Umin to Umax (0 to 1)

Generating a complete curve

- glMapGrid1d(N, U1, U2)
- glEvalMesh1(mode, N1,N2)
- This is equivalent to
glBegin(mode);
for ($\mathrm{i}=\mathrm{N} 1 ; \mathrm{i}<=\mathrm{N} 2 ; \mathrm{i}++$)
glEvalCoord1(U1 + i*(U2-U1)/N);
glEnd();

Interpolation with Bézier Curves

- We have 4 points we want the curve to pass through $P_{0^{\prime}} P_{1}, P_{2} \& P_{3}$
- What should control points $R_{0}, R_{1}, R_{2} \& R_{3}$ be?

$$
\begin{aligned}
& P_{0}=R_{0} B_{0}^{3}(0)+R_{1} B_{1}^{3}(0)+R_{2} B_{2}^{3}(0)+R_{3} B_{3}^{3}(0) \\
& P_{1}=R_{0} B_{0}^{3}\left(\frac{1}{3}\right)+R_{1} B_{1}^{3}\left(\frac{1}{3}\right)+R_{2} B_{2}^{3}\left(\frac{1}{3}\right)+R_{3} B_{3}^{3}\left(\frac{1}{3}\right) \\
& P_{2}=R_{0} B_{0}^{3}\left(\frac{2}{3}\right)+R_{1} B_{1}^{3}\left(\frac{2}{3}\right)+R_{2} B_{2}^{3}\left(\frac{2}{3}\right)+R_{3} B_{3}^{3}\left(\frac{2}{3}\right) \\
& P_{3}=R_{0} B_{0}^{3}(1)+R_{1} B_{1}^{3}(1)+R_{2} B_{2}^{3}(1)+R_{3} B_{3}^{3}(1)
\end{aligned}
$$

Relationship between P and R

$$
\begin{aligned}
& \left(\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{llll}
B_{0}^{3}(0) & B_{1}^{3}(0) & B_{2}^{3}(0) & B_{3}^{3}(0) \\
B_{0}^{3}\left(\frac{1}{3}\right) & B_{1}^{3}\left(\frac{1}{3}\right) & B_{2}^{3}\left(\frac{1}{3}\right) & B_{3}^{3}\left(\frac{1}{3}\right) \\
B_{0}^{3}\left(\frac{2}{3}\right) & B_{1}^{3}\left(\frac{2}{3}\right) & B_{2}^{3}\left(\frac{2}{3}\right) & B_{3}^{3}\left(\frac{2}{3}\right) \\
B_{0}^{3}(1) & B_{1}^{3}(1) & B_{2}^{3}(1) & B_{3}^{3}(1)
\end{array}\right)\left(\begin{array}{l}
R_{0} \\
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right) \\
& \left(\begin{array}{l}
R_{0} \\
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right)=\left(\begin{array}{llll}
B_{0}^{3}(0) & B_{1}^{3}(0) & B_{2}^{3}(0) & B_{3}^{3}(0) \\
B_{0}^{3}\left(\frac{1}{3}\right) & B_{1}^{3}\left(\frac{1}{3}\right) & B_{2}^{3}\left(\frac{1}{3}\right) & B_{3}^{3}\left(\frac{1}{3}\right) \\
B_{0}^{3}\left(\frac{2}{3}\right) & B_{1}^{3}\left(\frac{2}{3}\right) & B_{2}^{3}\left(\frac{2}{3}\right) & B_{3}^{3}\left(\frac{2}{3}\right) \\
B_{0}^{3}(1) & B_{1}^{3}(1) & B_{2}^{3}(1) & B_{3}^{3}(1)
\end{array}\right)^{-1}\left(\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)
\end{aligned}
$$

Bézier Interpolation Matrix

- Selected so $t=1 / 3$ and $t=2 / 3$ maps to $P_{1} \& P_{2}$
- Local function (depends only on $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

$$
\begin{array}{lllll}
B_{0}^{3}(t)=(1-t)^{3} & B_{0}^{3}(0)=1 & B_{0}^{3}\left(\frac{1}{3}\right)=\frac{8}{27} & B_{0}^{3}\left(\frac{2}{3}\right)=\frac{1}{27} & B_{0}^{3}(1)=0 \\
B_{1}^{3}(t)=3 t(1-t)^{2} & B_{1}^{3}(0)=0 & B_{1}^{3}\left(\frac{1}{3}\right)=\frac{4}{9} & \left.B_{1}^{3} \frac{2}{3}\right)=\frac{2}{9} & B_{1}^{3}(1)=0 \\
B_{2}^{3}(t)=3 t^{2}(1-t) & B_{2}^{3}(0)=0 & B_{2}^{3}\left(\frac{1}{3}\right)=\frac{2}{9} & \left.B_{2}^{3} \frac{2}{3}\right)=\frac{4}{9} & B_{2}^{3}(1)=0 \\
B_{3}^{3}(t)=t^{3} & B_{3}^{3}(0)=0 & B_{3}^{3}\left(\frac{1}{3}\right)=\frac{1}{27} & B_{3}^{3}\left(\frac{2}{3}\right)=\frac{8}{27} & B_{3}^{3}(1)=1
\end{array}
$$

Extending to More Points

- Two curves $P_{0}, P_{1}, P_{2}, P_{3}$ and $P_{4}, P_{5}, P_{6}, P_{7}$
- Bézier curves pass through $P_{0} \& P_{3}$ and $P_{4} \& P_{7}$, so the curve will be continuous of $P_{3}=P_{4}$
- Bézier curves are tangential to $P_{1}-P_{0} \& P_{2}-$ P_{3} and $P_{5}-P_{4} \& P_{6}-P_{7}$, so the curve will be smooth if $P_{3}=P_{4}$ and $P_{2}-P_{3}$ and $P_{5}-P_{4}$, therefor $P_{5}=2 P_{3}-P_{2}$

Splines

- Traditionally a long, thin, flexible piece of wood or metal used to describe a smooth curve
- Used in building boats, airplanes, etc.
- Held down by ducks or whales
- Mathematical equivalents
- Natural Cubic Spline
- Weights called knots
- Piecewise polynomial

Parametric Splines

- Three or four splines, one for each component
- Parameter t reach integer values at each knot
- Cardinal spline
- Natural Cubic Spline
- Clamped Cubic Spline
- Quadratic Spline
- Hermite Spline

Cardinal Cubic Spline

$$
\begin{aligned}
& S_{j}(t)=\frac{(j+1-t)^{3}-(j+1-t)}{6} G_{j}+\frac{(t-j)^{3}-(t-j)}{6} G_{j+1}+(j+1-t) F_{j}+(t-j) F_{j+1} \\
& S_{j}^{\prime}(t)=\frac{1-3(j+1-t)^{2}}{6} G_{j}+\frac{3(t-j)^{2}-1}{6} G_{j+1}+F_{j+1}-F_{j} \\
& S_{j}^{\prime \prime}(t)=(j+1-t) G_{j}+(t-j) G_{j+1}
\end{aligned}
$$

$$
\begin{aligned}
& S_{j}(j)=F_{j} \\
& S_{j-1}(j)=F_{j} \\
& S_{j}^{\prime \prime}(j)=G_{j} \\
& S_{j-1}^{\prime \prime}(j)=G_{j} \\
& S_{j}^{\prime}(j)=-\frac{1}{3} G_{j}-\frac{1}{6} G_{j+1}+F_{j+1}-F_{j} \\
& S_{j-1}^{\prime}(j)=\frac{1}{6} G_{j-1}-\frac{1}{3} G_{j}+F_{j}-F_{j-1} \\
& S_{j-1}^{\prime}(j)=S_{j}^{\prime}(j) \\
& \frac{1}{6} G_{j-1}+\frac{2}{3} G_{j}+\frac{1}{6} G_{j+1}=F_{j-1}-2 F_{j}+F_{j+1}
\end{aligned}
$$

Cardinal Cubic Spline

- Requires solution of tri-diagonal matrix
- Global (all knots impact everywhere)

$$
\frac{1}{6} G_{j-1}+\frac{2}{3} G_{j}+\frac{1}{6} G_{j+1}=F_{j-1}-2 F_{j}+F_{j+1}
$$

$$
\left(\begin{array}{cccccc}
1 & & & & & \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} & & & \\
& \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
& & & & & 1
\end{array}\right)\left(\begin{array}{c}
G_{0} \\
G_{1} \\
G_{2} \\
\vdots \\
G_{n-2} \\
G_{n-1}
\end{array}\right)=\left(\begin{array}{c}
F_{0}^{\prime \prime} \\
F_{0}-2 F_{1}+F_{2} \\
F_{1}-2 F_{2}+F_{3} \\
\vdots \\
F_{n-3}-2 F_{n-2}+F_{n-1} \\
F_{n-1}^{\prime \prime}
\end{array}\right)
$$

