
BeoPEST Programmer’s Documentation
Willem A. Schreüder
willem@prinmath.com

Version 1.0: 15 November 2009

This is programmer’s documentation for those interested into devling into the ugly depths
of BeoPEST where jobs get scheduled and the master and slaves communicate. It is not
required reading for using BeoPEST, but rather intended as internal documentation for those
developing and maintaining PEST. And it is definately not for the feint of hart. Purists should
write better code.

This is the initial draft, and it is pretty rough. As the code matures this documenation
will hopefully improve to rise to the high standards set by the exquisite PEST documentation.

Please email any corrections, suggestions and improvements to the author. Improve-
ments, bug fixes and clever ideas are always welcome.

Introduction
This documentation is intended to document the communications interface employed

by BeoPEST. BeoPEST is a version of parallel PEST that that employs smart slaves and
point-to-point communications to transfer data between the master and slaves.

BeoPEST comes in two flavors: BeoPEST/TCP and BeoPEST/MPI. Both flavors exist
in the same code and both flavors can be activated at compile time. In fact, the BeoPEST ex-
ecutable is named ppest and by default will use the file based communications employed by
ppest. However, by specifying the /M flag, the code will operate in BeoPEST/MPI mode,
while specifying the /H flag the code will operate in BeoPEST/TCP mode.

To compile the code in BeoPEST mode, the -DBEO command line flag must be specified.
To enable MPI at compile time the -DBEOMPI command line flag must be specified. Without
the BEOMPI flag, BeoPEST will be compiled in TCP/IP mode only.

The source code for BeoPEST is typically saved in the src directory. The programs are
then compiled in directories named for the architecture. The 64 bit linux code is compiled
in x86 64-linux, the 32 bit linux code is compiled in i686-linux, the OSX code (which is both
32 and 64 bit) is comiled in x86 64-darwin, etc. The source code directory is referenced in
the makefile using the VPATH command. This procedure is not required, but is convenient
when compiling the same source code for multiple architectures.

Note that the makefile supplied with BeoPEST is different than the makefile distributed
with PEST. It builds pest, ppest and the utilities in a single makefile.

The following sections describe the BeoPESTimplementation and how it interfaces with
PEST. The first section describes the high level interface to BeoPEST. This level of func-
tionality allows both MPI and TCP/IP modes to operate using a single interface that hides
the complexity of actually passing the messages. This level is appropriate for actually imple-
menting communications between the master and slave nodes. The interface was designed to
abstract the passing of messages sufficiently to hide the implementation differences between
using MPI and TCP/IP.

The next section describes the top level interface. This interface is really simple and
consists of basically two functions: RUNMASTER and RUNSLAVE. These functions are
designed for interfacing with PEST. It is presented second as a demonstration of using the
top level interface to run a set of runs on the slaves.

1



The third section describes the low level interface. The low level interface describes the
TCP/IP functions that implement the actual sending and receiving of messages. The MPI
low level interface is well documented elsewhere, so the low level interface described here only
describes the TCP/IP functions.

High Level Interface
The BeoPESThigh level interface consists of a series of FORTRAN routines. These

routines implements the BeoPEST communications scheme independent of the low level im-
plementation. The routines hide complexities such as whether TCP/IP or MPI is used as the
transport mechanism.

MODULE BEOPEST

This module exposes a few variables that can be publically used. These variables should
not be changed outside the BeoPESTroutines. The variables made available in this way are:
LOGICAL BEOMASTER true on the master node
LOGICAL BEOSLAVE true on the slave node
LOGICAL BEOLASTLOC true if the last run should be run locally
INTEGER MAXNODE maximum number of BeoPESTslaves

A module BEOPRIV is used to store variables that BeoPESTconsiders to be private
and only to be seen inside BeoPEST. These variables should NEVER be used. Should you
find that a variable from there is useful, we should agonize about moving that variable to the
BEOPEST module.

SUBROUTINE BEOINIT(HOST,MAXNODE)
CHARACTER*(*) HOST
INTEGER MAXNODE

This function is used to initialize BeoPEST. It must be called before any other BEO*
function. The HOST and MAXNODE variables are named for their use in TCP/IP mode,
and are complete misnomers in MPI mode. The HOST string is the name of the host specified
by the user on the command line. This consiststs of the host:port or :port character string.
BEOINIT will parse this string and set the BEOMASTER and BEOSLAVE logical variables
appropriately, as well as open the TCP/IP connections. The MAXNODE parameter is used
by BEOINIT to statically allocate memory for up to MAXNODE slaves. The amount of
memory per slave is small, so this should be set generously, because it cannot be changed
during the run. A value like 8192 or greater is appropriate.

MPI mode is selected by setting MAXNODE to less tahn or equal to zero. In this instance
BeoPESTwill use the MPI COMM SIZE call to determine the number of slaves available and
set BEOMASTER to true for node 0 and BEOSLAVE to true for all other nodes. The HOST
string is used to specify a directory. BeoPESTwill append the node number to this string
and change the working directory to this directory in BEOINIT.

BEOINIT performs a number of other functions like allocating memory for BeoPEST’s
internal use. If the allocation fails, BEOINIT will not return. In TCP/IP model, BEOINIT
will also open a TCP/IP connection to the master if it is a slave. If this connection fails,
BEOINIT will not return but stop with an appropriate error message. BeoPESTwill try hard

2



to establish this connection, so BEOINIT may keep trying to establish this connection for
seconds to minutes before failing, but will generally return in milliseconds.

SUBROUTINE BEOFIN

This function is used to shut down BeoPESTin an orderly fashion. On the MASTER,
this function will send a special message to all the slaves causing them to shut downi before
closing the connections, and then print run time statistics for all the slaves.

On the slaves BeoPESTwill close the connection. This is particularly important in MPI
mode because most MPI implementations will complain if not properly terminated.

SUBROUTINE BEOCAST(NPAR,NOBS,CSUM)
INTEGER NPAR
INTEGER NOBS
INTEGER CSUM

This function should be called once and only once shortly after calling BEOINIT and
other BEO* functions. On the master, the number of parameters, number of observations
and an integer checksum should passed to this function. As each slave connect, these values
will then be sent to the slave.

On the slaves, the BEOCAST function will return the number of parameters, observa-
tions and the checksum when it connects to the master. The slave should check that it agrees
with the values received from the master or stop immediately because when the master and
slave disagrees on the number of parameters, observations or checksum, the slave is connect-
ing to a master that is reading a different PESTcontrol file. This sanity check should be done
as soon as practical after reading the PESTcontrol file. Note that this functionality could
have been built into the BEOINIT function, but is provided separately so that BEOINIT can
be called before even reading the PESTcontrol file. It is, however, crucial that BEOCAST be
called as it must allocate memory that depends on the number of parameters and observations
that will be used for communicating with slaves.

SUBROUTINE BEONODE(KP0,KP1)
INTEGER KP0,KP1

This function is used to obtain the number of slaves available. In MPI mode, KP0 will
always be 1 and KP1 will always be the number of slaves and will never change. However in
TCP/IP mode, KP0 will be one or greater and KP1 will vary depending on the number of
available slaves. These numbers can change at any time in TCPI/IP mode.

The recommended usage of BEONODE is to always call BEONODE to get indexes for
the first and last node number before every loop that scans slaves, and then loop from KP0
to KP1. In MPI mode this introduces no overhead.

LOGICAL FUNCTION BEOGET(PAR)
DOUBLE PRECISION PAR(NPAR)

This function should be called ONLY on a slave. The BEOGET function does a blocking
read and returns NPAR double precision values which is a set of parameters that the master
wants the slave to run.

3



The function blocks and does not return until a set of parameters are received. The
funtion returns true if a set of parameters are received from the master and the values are
packed in the PAR array passed to BEOGET. The function will return false if the master
sends the done message. The slave should react to a BEOGET false by calling BEOFIN to
shut down the connection as the master will be sending no more parameters.

SUBROUTINE BEOPUT(PAR,OBS)
DOUBLE PRECISION PAR(NPAR),OBS(NOBS)

This routine should ONLY be called from the slave to return a set of parameters and
observations to the master. The PAR array should contain the parameters as written and
the observations as read from the model output.

This function should return quickly as the master should have performed a non-blocking
read to rceive these values. Since BeoPESTuses reliable communications, this call will only
fail if the master crashed. Therefore a write error in this function will cause the slave to also
crash in response to the crash on the master.

SUBROUTINE BEOPUSH(NODE,PAR)
INTEGER NODE
DOUBLE PRECISION PAR(NPAR)

This routine should ONLY be called on the master. The NODE value should be the node
number that is the node on which the master wants the run to be done. The parameters to
be passed to the slave should be in PAR.

This function will return quickly and never fail. If the slave has died, it will be detected
later by BEOSTAT. The routine will allocate memory and post a nonblocking receive that
will receive the results from the slave. The BEOSTAT function should be used to test when
the slave is done.

INTEGER FUNCTION BEOSTAT(NODE)

The BEOSTAT function should ONLY be called on the master. It is used to check the
status of the slave. The NODE value is the node to check. The BEONODE function should
be used to determine wha nodes can be checked.

The function returns 0 if the run requested with BEOPUSH is still working. This means
that the results has not been received yet and BEOSTAT should be called again to check if
the run finished.

The function returns 1 if the slave is idle. This means could mean that the slave has
finished running the job. It is important that if the the slave finished running a job, the results
of that run be processed before scheduling the next job to avoid destroying the returned
results. The results should be stored using the BEOSTORE function.

If the slave died, the BEOSTAT function will return -1. If a job had been scheduled on
that slave, the results are irretrievably lost and the run should be rescheduled.

SUBROUTINE BEOSTORE(NODE,JOB,PARREG,OBSREG)
INTEGER NODE,JOB,PARREG,OBSREG

This function is used to store the results returned by a slave to the file register. BEO-
STORE should be called after BEOSTAT returns 1 to indicate that the slave has completed

4



the scheduled job. NODE is the node that returned the value, and JOB is the job number
which is used to select the register to which results are saved. PARREG and OBSREG are
the logical units needed by the STORE PARALLEL REGISTER as logical units.

DOUBLE PRECISION FUNCTION BEOWALL(NODE)
INTEGER NODE

This function returns the wall time it took to execute the last run on this node.

SUBROUTINE BEOFATAL(MESSAGE)
CHARACTER*(*) MESSAGE

This function will abruptly terminate the process with the node number and the supplied
message. This function should be called if there is an unrecoverable error. It is best suited to
being called on the slave. On the master, much more care should be taken than such a harsh
action.

DOUBLE PRECISION WALLTIME()

This function returns the number of seconds since 1-Jan-1970. This is the UNIX time
index. Values returned can a best be accurate to a millisecond.

CHARACTER*256 FUNCTION BEOTEXT(NODE)
INTEGER NODE

This function returns the identifying text string that descripes the node. In MPI mode,
this is the node number which is an integer between 0 and the number of nodes. In TCP/IP
mode, this is a text string that may include the host name, architecture and similar informa-
tion sent to the master by the slave. This is an untrusted string and should only be used to
print identifying information.

Top Level Interface
BeoPESTis initialized in the PEST PARSE COMMAND LINE function. If neither the

/H or /M flags are specified, both the BEOMSATER and BEOSLAVE logical variables are
set to false. However, if etiher the /H or /M flag is specified, then BEOINIT is called. With
the /H flag, the TCP/IP approach is selected by specifying 8192 as the maximum number of
slaves. This number is set at compile time and should be increased if that number of slaves
becomes commonplace. In MPI mode selected by the /M flag, the number of nodes are set
to 0. The user supplied text string interepreted to be the HOST:PORT or directory string in
TCP/IP and MPI modes, respectively, is passed verbatim.

The BEOMASTER and BEOSLAVE variables should be used to dynamically determine
whether PESTshould operate in master, slave or no BeoPESTmode.

If BEOSLAVE is true, the main routine is short circuited by calling RUNSLAVE right af-
ter READ PEST DATA. Therefore in slave mode, the main program will rad the PESTcontrol
file which also in turn reads the template and instruction files, and then call RUNSLAVE.
Upon returning from RUNSLAVE, the slave simply shuts down by calling PEST FILES CLOSE,
PEST DATA DEALLOCATE and BEOFIN.

If BEOMASTER is true, the PESTfunctionality is invoked as usual. However, the BEO-
MASTER variable is tested in a few places to short circuit, for example, reading the rmf file.

5



The main switch occurs in the RUN PEST function. In order to schedule the runs on the
slave, the RUNMASTER function is used to execute the runs. This function is equivalent to
the DORUNS routines used before. Runs to do is passed to RUNMASTER using the PAR-
REG register file. Similarly, the returned results are returned using the OBSREG register
file.

SUBROUTINE RUNMASTER(PARREG,OBSREG,NJOB,JFAIL)
INTEGER PARREG,OBSREG,NJOB,JFAIL

This routine runs a set of jobs. The number of jobs are determined by the NJOB variable.
The result of this function is returned via the JFAIL variable.

The parameters to run are passed using the PEST register file mechanism. After running
the jobs, the actual parameters ran by the slave are saved in the same parameter register
file, while the observations are saved in the observation register file. The logical units for the
parameter and observation register files are passed in the PARREG and OBSREG variables.

The RUNMASTER function tracks the jobs using MODE variable. This array is dy-
namically allocated and dimensioned to NJOB. It is initialized to -1 indicating that no jobs
have been run. After a job was successfully run, the MODE variable for the corresponding
job is set to 0. When the job is schedule on a node, the MODE variable is set to the slave
node. This is not actually used, but is potentially useful.

The STAT variable is used to track active nodes. It is dimensioned to MAXNODE which
is the number of MPI nodes, or the maximum nomber of nodes set in TCP/IP mode. It is
initially set to -1 marking all nodes as offline. The BEOSTAT routine is used to test all nodes
in the range specified by BEONODE. A STAT value of zero is used to indicate that the slave
is idle, while a positive value is used to indicate which job is scheduled on that slave.

When BEOSTAT indicates that a node is idle, the current value of STAT is checked.
If STAT is positive, this means that a job previously scheduled on this node has completed.
The MODE variable for that job is therefore set to zero indicating that the job has been
processed, and the BEOSTORE routine called to store the returned values in the register
files. The STAT variable is then set to zero to indicate that the slave is idle.

If BEOSTAT indicates that the node is idle, a previously dead slave indicated by a
negative STAT value is marked as idle by setting STAT to zero.

If BEOSTAT indicates that a node has died, the value of STAT is checked to see if a job
had been scheduled on that node. If STAT is positive, that job failed. The MODE variable
for that job is therefore set to -1 (not scheduled). Regardless of the previous value of STAT,
a dead slave will cause the value of STAT to be set to -1.

After checking the status of all the nodes with BEOSTAT, RUNMASTER will attempt
to schedule any unscheduled jobs. The idle variable is used to store the fastest free slave.
This is done by checking all nodes with STAT set to zero. The BEOWALL function returns
the time used to run the last job. If idle is zero, no idle slave was found.

The next variable is used to store the number of the first unscheduled job found in
MODE. If an unscheduled jobs exists and a slave is idle, the BEOPUSH routine is used to
schedule that job.

If there no job completed or was scheduled, the master will sleep for 5 milliseconds before
trying again.

6



SUBROUTINE RUNSLAVE

The RUNSLAVE routine encapsulates all of the smart slave activity. The routine only
requires that BEOINIT be called prior to calling RUNSLAVE to initialize the communications
infrastructure.

The RUNSLAVE routine calls the standard PEST routines IOCTL and READINS to
read the template and instruction files. It then enters an endless loop calling BEOGET to
read parameters to run.

When a set of parameters are received from the master, the standard PEST INWRIT
routine is used to write the model input files. The SYSTEM call is called next to run the
model. Next the standard PEST OUTRD routine is used to read the model results. Finally
BEOPUT is used to return the parameter and observations to the master.

SUBROUTINE FASTSLAVES(NUMSLAVE)
INTEGER NUMSLAVE

This function returns the number of fast slaves. Fast is defined as an execution time no
more than twice the execution time of the fastest slave.

MPI Low Level Interface
The MPI low level interface is implemented using point-to-point MPI messages. Com-

munications are initiated in the BEOINIT routine, which also gets the total number of nodes.
Node 0 assumes the role of master, while all other nodes will act as slaves.

In MPI mode, the master and slaves individually read the PEST control file. In the
BEOCAST routine, an MPI BCAST call is used to ensure that the master and slaves agree
on the number of parameters, number of observations and a checksum. On the master,
the BEOCAST routine also allocates buffers that will be used to receive the parameters and
observations from the slaves. This occurs in the BEOCAST routine because this is the earliest
call where the number of parameters, number of observatins and number of slaves are known.

The BEOPUSH function on the master schedules a run on a slave. The BEOPUSH func-
tion first posts two nonblocking receives, one for the parameters and one for the observations.
The buffers allocated in the BEOCAST call are used to receive these values. The parameters
and observations are distinguished by using different tags. After posting the receives, master
sends the number of parameters and the array of parameters as blocking sends. The number
of parameters is used as a signal, with a parameter count of zero indicating the end of the
optimization.

The slaves executes a blocking read using MPI RECV in the BEOGET function. It
first receives the integer parameter count, and then the actual parameters as double preci-
sion. After running the model and obtaining the results, the parameters and observations
are returned using a blocking MPI SEND. Tags are used to distinguish the parameters and
observations.

The BEOSTAT function is used on the master to test for completion of the slave. The
MPI TEST function is used in conjunction with the pointer returned by the MPI IRECV to
test whether both the parameter and observatins were returned.

TCP/IP Low Level Interface
The TCP/IP low level interface is written in C. This choice of language is to a large

extent dictated by the fact that the TCP/IP implementation is a socket based communication

7



which was originally implemented on the UNIX system which was written in C. In fact, C
was largely invented in order to write the original UNIX operating system. Therefore the
C language is the natural choice in which to implement the TCP/IP communications. It
is also worth nothing that MPI is also written in C. However, both the MPI and TCP/IP
implementations in C have bindings to FORTRAN to allow it to be used with the high level
BeoPEST interface. The interface is therefore described in terms of FORTRAN here.

It is very important to note that the TCP/IP implementation is NOT intended to be a full
fledged message library the way MPI is. There are many implementation specific assumptions
that makes this implementation unsuitable for general purpose use. For example, it is assumed
that point to point communications will always be from the master to the slaves. Slaves never
communicate with each other. MPI allows slave-to-slave communications in general, but this
requires a far more complex implementation. This code takes LOTS of ugly shortcuts in order
that greatly simplify the implementation. Therfore if you want to change the implementation
it would wise to make sure that it does not violate any of these assumptions.

SUBROUTINE TCPOPEN(MAXSLAVES,NAME,NODE)
INTEGER MAXSLAVES
CHARACTER(*) NAME
INTEGER NODE

This function establishes the connection between master and slave nodes. The NAME
variable is used to identify whether the function should actin in master or slave mode. If the
NAME is :d where d is an integer port number, the function acts in master mode and opens
that port to listen on and accept connections from slaves. If the NAME is h:d where h is a
hostname and d is an integer port number, the function acts in slave mode and connects the
master at the specified host and port.

The NAME variable is unusual in that it must be a C style string, that is terminated by
a null.

In master mode, the MAXSLAVES variable is used to allocate memory for that many
connections. Only about 64 bytes are allocated for each potential slave in this function,
so setting MAXSLAVES much larger than then number of possible slaves is not a penalty.
Currently this is set to 8192 in BeoPEST.

In slave mode, this function will establish a TCP/IP connection to the master. If a
connection cannot be established, either due to the master having died or a communications
faulure or some similar reason, the function will print an error message and exit with a fatal
error. If the connection is established, the slave will receive a two byte integer from the
master that will establish whether the master and slave has the same byte gender. If the
slave detects that it has the opposite byte gender than the master, the slave will remember
to reverse the byte gender on all its communications with the master. Finally the slave will
send a string identifying itself to the master which may be useful for identifying individual
slaves.

On completion the TCPOPEN function will set the NODE variable. For the master this
will be zero. For a slave this will be a positive integer which is the node number assigned by
the master.

SUBROUTINE TCPSEND(NODE,BUFFER,LEN,NUM)

8



INTEGER NODE
* BUFFER INTEGER LEN
INTEGER NUM

The TCPSEND function is used to send BUFFER to the node number NODE. This can
be called on the master to send to any of the slaves. On the slaves it can only be used to send
to the master. BUFFER can be any variable and is passed as a pointer to this function. LEN
identifies the size of the items passed in BUFFER. This would typically be 4 for integers and
8 for double precision floating point numbers. NUM is the number of these values to send.

The number of bytes transferred by TCPSEND is LEN*NUM. However, in those in-
stances where the byte gender of the master and slave is different, every LEN bytes will be
reversed on the slave to adjust the byte gender to match the master.

TCPSEND performs a blocking send. The function will not return until the operating
system took responsibility for all the bytes to send. This does not always mean that it has
been received at the other end. If the send fails, an informational message will be printed,
but failed sends will return without an error message and rely on future calls to flag the
fatal error. Since TCP/IP is a reliable protocol, a failure means that the communications
infrastructure has failed or the process being sent to has died. This will cause the connection
to be dropped and result in a future failure.

SUBROUTINE TCPRECV(NODE,BUFFER,LEN,NUM)
INTEGER NODE
* BUFFER INTEGER LEN
INTEGER NUM

This function is used to perform a blocking read. While it potentially can be used on the
master, this is not used because the master should never sit and wait for a client. Instead,
the master should use TCPPOST which is a nonblocking read. Slaves, on the other hand,
can use TCPRECV to wait until the master gives them a task. This consumes no effort on
the slaves.

The NODE selects the node from which to receive the input. This will always be zero
(the master) for the slaves. The BUFFER is where the result should be placed, which is an
arbitrary variable passed as a pointer. How many bytes the slave expects to receive is set by
LEN and NUM. LEN specifies the length of the variable type, typically 4 for integers and 8
for double precision reals. NUM sets the number of values to receive. The total number of
bytes received is LEN*NUM. Both LEN and NUM must be specified because if the master
and slave have differing byte gender, the slave must reverse the order of the bytes withing
each variable.

SUBROUTINE TCPPOST(NODE,TAG,LEN,NUM)
INTEGER NODE
INTEGER TAG
INTEGER LEN
INTEGER NUM

The TCPPOST subroutine is used to post a nonblocking read. It should ONLY be used
on the master. The NODE is the slave from which the answer is expected. The TAG is
used to allow multiple receives to be posted simultaneously. Specifically, a TAG of 0 and

9



1 allows both the parameters and observations to be received. In actuality, this does not
truly implement tagged messages as supported by MPI. The concept of a tag in MPI allows
multiple messages to be sent from one process to another, and the variable type and tag can
be used to separate the different messages. Such sophistication is not required here, so this
this implementation only does lip service to the concept. Specifically, the TCPPOST only
allows the parameters and observations to be received as two seperated buffers instead of
a single buffer. This is done as two TCPSEND calls on the slave. The slave does not tag
the sent messages. Only the order of the messages (which is guaranteed to arrive in order)
separates the messages which TCPPOST will separate into the tags 0 and 1.

It is not required that TCPPOST calls tag 0 before tag 1. However, the first send from
the slave will go to tag 0 and the second to tag 1.

Like TCPSEND and TCPRECV the LEN and NUM values set the length of the variables
(4 for integers and 8 for double precision reals) and the number of variables. Since TCPPOST
is ONLY used on the master, only LEN*NUM is required because the byte gender adjustment
is done on the slave. Therefore the requirement that both LEN and NUM be specified is simply
to provide a consistent interface.

SUBROUTINE TCPTEST(NODE,FLAG)
INTEGER NODE
INTEGER FLAG

This function determines if the nonblocking receives posted by TCPPOST has completed.
It is assumed that two TCPPOST calls are always done (TAG 0 and 1) so TCPTEST will
test whether both receives have completed.

TCPTEST should ONLY be called from the master. The NODE specifies which slave
to test. The FLAG variable returns the status of the transfer. A positive value indicates
that the receive has completed and therefore that sets of values from the slave is available.
A value of 0 indicates that the messages have not yet arrived, either because the slave is still
working and have not sent the results yet, or only some of the bytes have arrived yet.

Since TCP/IP is a reliable protocol, an error resulting from a failed slave process or
a failure in the communications infrastracture can be reliably detected. If such a failure is
detected, a value of -1 is returned in FLAG. The master should act on this as a failed slave
and reschedule the job.

When the TCPTEST returns 1, the TCPLOAD function can be used to access the
received messages. It is important that this occurs before doing the next TCPPOST to
prevent the buffers being overwritten.

SUBROUTINE TCPLOAD(NODE,TAG,BUFFER,LEN,NUM)
INTEGER NODE
INTEGER TAG
* BUFFER
INTEGER LEN
INTEGER NUM

The TCPLOAD function is used ONLY on the master to retrieve the messages received
from the slaves. The NODE and TAG is used to identify the specific message and the LEN
and NUM is used to determine its size. LEN and NUM is actually redundant since it is know

10



how large the message is from the TCPPOST call, but it is retained here for the sake of
paranoia.

The function copies the bytes from an internal buffer into the user supplied BUFFER.
Note that TCPLOAD must only be called after TCPTEST indicates that the message has
completed.

SUBROUTINE TCPCLOSE()

The TCPCLOSE function closes all the TCP/IP connection. On the master multiple
connections are closed, while on the slave only the one connection exists and is closed. This
function does nothing other than close the connections gracefully and free the associated
memory.

SUBROUTINE TCPCAST(NPAR,NOBJ,CSUM)
INTEGER NPAR,NOBJ,CSUM

The TCPCAST function is used to perform an asymmetric broadcast of the number of
parameters and observations and a checksum. This is necessary because unlike MPI, slaves
can joint the master at any time. Therfore the master cannot wait for all the slaves to join
before doing the broadcast.

TCPCAST must ONLY be called on the master. This sets the number of parameters
and objects and the checksum on the master and returns immediately.

When a slave connects to the master, the master will send these parameters to the slave.
The slave must do a TCPRECV to receive these values and check that the master and slave
agrees on the number of parameters and observations and the checksum.

SUBROUTINE TCPNODE(LIVE,WALL,NAME,NUM)
INTEGER LIVE()
DOUBLE WALL()
CHARACTER*(*) NAME()
INTEGER NUM

This function is used to check for new slaves. The function should be called frequently
since this is where the connections from slaves are accepted. If the master fails to call this
function for an extended period of time, newly connection slaves may give up thinking that
the master process has died because the connection was not accepted.

The NUM variable is set to the highest node number among the active slaves. The LIVE
array is used to indicate which nodes are actually live. When a new slaves connects, the
corresponding entry in the LIVE array is set to -1 to indicate that the slave is idle. The
LIVE variable is used internally by the BeoPEST routines to keep track of slaves.

The new slave sends to the master a speed estimate and an identifying string. The speed
estimate is used to initialize WALL which is the execution time of a job and NAME which
is an identifying string for the slave. By setting WALL to zero the slave will be scheduled a
job as soon as possible.

Coming Attractions
One of the most difficult problems for BeoPEST is load balancing. Since some sets of

parameters may cause the model to run very slowly while others run fast, it is difficult to

11



keep all the slaves busy doing useful work. This problem is exacerbated when some of the
slaves are older machines that are not as fast as others. It is difficult for BeoPEST to detect
whether the problem is that the set of parameters just makes the problem hard to solve, or
whether the hardware is simply slow or busy doing something else.

A simple solution to this problem relies on the fact that the model runs are idempotent.
This simply means that you can run the job several times without negative side effects. The
concept is therefore that when there are idle slaves and some jobs have been running for a
while but not yet completed, the master can reschedule those jobs on the idle slaves in the
hope that they can get the job done faster.

In order to implement this, all that is required is that the RUNMASTER program be
adapted to perform this over scheduling. Then when the first of the solutions are obtained,
the master must notify the slave that it can give up on the job. This is a bit tricky. The
current RUNSLAVE is purely sequential. It performs a blocking read for the parameters,
runs the model and returns the results. In order to receive notification that the result is no
longer needed, the slave must have the ability to receive the never mind message, abort the
running process with prejudice, and block for the next scheduled job. On the master it is
necessary to clean out the posted receives.

This task is nontrivial to implement in a portable way. On a UNIX/Linux/OSX system,
the fork() mechanism can be used to spawn a child process. The slave can then use the
select() mechanism to monitor for any incoming messages for the master without blocking. If
the never mind message is received form the master, the slave can use the kill() mechanism
to terminate the child process. Alternatively if the child process terminates, the slave will be
notified via a signal and can proceed with processing the results.

A similar mechanisms is available on Windows systems, but is quite different in details
from the UNIX/Linux/OSX framework in implementation. Therefore implementing this fea-
ture needs to be done with great care. Since this delves fairly deep into the operating system
specifics, this functionality will have to be implemented in C just like the TCP/IP function-
ality.

12


