Running BeoPEST

Willem A. Schrelider
willem@prinmath.com

Introduction

BeoPEST is a special version of Parallel PEST inspired by Beowulf Clusters. A Beowulf
Cluster is simply a number of commodity computers that are tied together using a reasonably
fast network. The name is derived from the original Beowulf computer built by Thomas
Sterling and Donald Becker at NASA. Although strictly speaking a Beowulf Cluster runs a
common operating system (typically Linux), the term is used much more loosely here. In fact,
BeoPEST is actually designed to form an ad hoc cluster on the fly. The cluster can comprise
any set of computers than are able to communicate via the internet.

BeoPEST differs from the the traditional Parallel PEST only in how it communicates with
slaves and how slaves know what to do. In the traditional Parallel PEST, a master process
creates files using a template and read the results using the instruction file, in addition to
performing the actual parameter estimation calculations. The slave simply executes the
model runs. In BeoPEST, the master process still performs the parameter estimation
calculations exactly as before, but instead of writing and reading files, it sends the set of
parameters to be run to the slave, and receives observations from the slave in binary form
over a network connection. The BeoPEST slave is smart and creates the model input files
from the parameters as instructed by the master, runs the model, extracts the observations
from the model output files, and sends the resulting observations back to the master.
Therefore as much of the work as is possible is offloaded to the slave, and the master only
deals with the parameter estimation proper.

BeoPEST comes in two flavors, BeoPEST/TCP and BeoPEST/MPI. BeoPEST/TCP uses
TCP/IP connections to form an ad hoc cluster consisting of any set of computers that can
communicate via a local area network or the internet. BeoPEST/MPI uses the Message
Passing Interface (MPI) protocol to communicate and is more suited to running BeoPEST on
a tightly integrated cluster. BeoPEST provides a single ppest executable, and switches
between the traditional file based parallel pest, BeoPEST/TCP and BeoPEST/MPI using
command line flags.

The BeoPEST implementation also has a number of cutting edge features for high
performance computing. BeoPEST/TCP is distributed in the sense of grid computing. In

particular, this means that the slaves does not need to be on the same local area network as
the master. BeoPEST/TCP allows some of the slaves to be at the other side of an internet
connection. Thus, BeoPEST/TCP can tie multiple machines or even multiple clusters of
machines together.

BeoPEST scales well. BeoPEST can be run efficiently with hundreds or thousands of slaves
serving a single master. The inherent granularity of the problem may restrict the number of
slaves that can be used efficiently, but BeoPEST can generally achieve high efficiencies.

BeoPEST/TCP is fault tolerant. It gracefully recovers from failed nodes. In addition, new
nodes can be dynamically added and removed from the slave pool.

BeoPEST/TCP supports heterogeneous environments. The slave pool can consist of a mix of
operating systems and hardware. For example, some slaves may be run on Windows
workstations, while others may be run on a Linux servers using Intel hardware, while yet other
slaves run AIX on IBM Power hardware. BeoPEST/TCP will readily accommodate such a
heterogeneous environment.

BeoPEST does not need any additional files. Traditional Parallel PEST requires a Run
Management File (RMF). BeoPEST only requires the Pest Control File (PST). All the
information required by both the master and all slaves is contained in the PST file or supplied
on the command line.

Running BeoPEST/TCP

With traditional Parallel PEST, the slaves are started first, and the master last. With
BeoPEST/TCP, the master is started first, and slaves are started as needed.

The BeoPEST/TCP and traditional Parallel PEST executable programs are actually the same.
To start the program in BeoPEST/TCP mode, the ppest program is started with the /H
command line option. The /H option takes a port number which is preceded by a colon. The
port number can be any unused port on the host where the master is run. Port numbers are
positive integers between 1024 and 65536. Typically a port number such as 4004 is unused,
so the master is started as

ppest foo /H :4004
where foo is the name of the parameter estimation. The master will read foo.pst to determine
the parameters, observations, pest control parameters and the like. However, the master will
not run the model. Instead it will wait indefinitely for one or more slaves to contact it. The port

number specifies the port on which the slaves should contact the master. Note that if the /H
flag is not specified, the program will revert to the traditional Parallel PEST behavior as
specified in the run management file.

The pslave program from traditional Parallel PEST does not exist for BeoPEST. Instead, the
ppest program is used again using the /H flag. If the master is run on a computer masterhost,
the slave is started as
ppest foo /H masterhost:4004

Note that the PST file must be exactly the same as the PST file read by the master and the
port number (4004 in this example) must be the same as the master. The presence of a host
name before the port number distinguishes the slaves from the master. The slave will read
the PST file to get the names of all the parameters and observations. The slave will also
determine the template, instruction and model files from the the PST file. This is sufficient
information for the slave to be able to create model input files based on parameter values
supplied by the master and run the model. Once the model run completes, the slave can
extract the observations from the model output files and send the observation values back to
the master.

As many slave instances of BeoPEST can be started as necessary. Of course, care needs to
be taken to avoid conflicts between the slave programs. In particular, the slaves should be
run so that different slaves do not attempt to create conflicting files. This is readily achieved
by running each slave in a separate directory. Efficient ways of doing this is discussed below.

Running BeoPEST/MPI

BeoPEST/MPI uses the Message Passing Interface (MPI) facilities on the cluster to run.
BeoPEST/MPI uses the node numbering (rank) assigned by MPI, with 0 being the master and
the remainder being slaves. BeoPEST/MPI supports fault tolerance, heterogeneity and grid
computing only to the extent supported by the specific MPIl implementation.

BeoPEST/MPI is run using the mpirun program provided by the MPI implementation as
mpirun -np N ppest foo /M dir

where N is the number of processors to use, foo refers to the foo.pst pest control file and dir

is the name of a directory where the model files will be created. BeoPEST/MPI will append

the node number to dir in order to create a unique file name for each slave. If, for example,

dir is /tmp/bp, then node 27 will use /tmp/bp27 as its working directory. If the directory does

not exist, BeoPEST/MPI will attempt to create the directory. BeoPEST/MPI will set its current

working directory to this directory, so that files with no path is created in this unique directory.
Since BeoPEST/MPI will change the directory in which ppest is run, it is important that foo
contains a full path name so that the file can be found after the directory change.

BeoPEST file management

Figure 1 shows the communications between the master and slave instances of BeoPEST,
global file storage on the LAN and local file storage on each individual slave. In order to
achieve high efficiencies, it is important to organize where files are stored to minimize
communications delays in passing messages and reading or writing files, while at the same
time avoiding duplicating files with the associated concerns of maintaining up to date copies
of each duplicated file.

Running BeoPEST involves four types of files: system specific programs, system specific
data files, non system specific data files, and local files.

System specific programs refers to programs such as ppest and other PEST utilities. These
programs are typically Fortan programs that must be compiled for the specific architecture
and operating system. These programs must be accessible on the master and all the
slaves, and each slave must be able to access the programs for the appropriate architecture.
These programs may be copied to each computer, but more commonly one copy of all the
programs can be stored on the local area network and accessed for by all the computers of
the same architecture.

Local files are those model input files created by BeoPEST and model output files. These
files are by necessity specific to each model run. In order to avoid unnecessary network
traffic, these files should be written to scratch space on each slave node. On Unix/Linux
machines, for example, this could be in a subdirectory to the /tmp directory. The key here is
that for efficiency purposes, these files should be written on locally attached storage on the
slave. This is particularly important when the slaves are not on the same local area network
as the master. These files will be overwritten many times, and will generally not be retained
after the parameter estimation is complete.

The remaining files are input files to PEST and the model. The template and instruction files
are required by BeoPEST slaves to know how to process model files. The model may have
additional input files that it reads. These files would often be system independent, but in
some cases such as when using binary input files, these files may also be system specific.
The common thread here is that these files are the same for all model runs. Therefore these

files can be treated as if they are read only. While a copy of these files may be provided on
each slave node, it is generally only required that a single copy of these files reside on the
local area network. All slaves on the local area network can access these same files. Since
these files are only read, most modern operating systems will cache these files so that these
files are shared very efficiently on the local area network. Of course, when more than one
system type occurs on the local area network, it may be necessary to provide copies of
system specific data files for each type of system in such a way that the files can be found in
an appropriate directory.

When some of the PEST slaves is at a remote site with a relatively slow connection, it is very
important that a local copy of these files are provided that can be efficiently read. For
example, when the parameter estimation is done by combining two or more distributed
clusters, a local copy of these files should be available on each cluster in order for efficiency.
Figure 2 illustrates a BeoPEST run using two remote clusters. Note that each slave
communicates directly with the master, but due to the low bandwidth requirements and high
latency tolerance of the BeoPEST protocaol, this is insignificant. Each slave shown in Figure 2
accesses common files from a local file store on the local area network. Remote copies of
these files should be synchronized before the parameter estimation is started, but does not
change during the parameter estimation.

When creating shared files such as, for example, the PST file, care should be taken to set up
appropriate path names so that the master as well as all the slaves can find all the necessary
files. While this can be achieved by different PST files for the master and different groups of
slaves, experience has shown that it is generally desirable to set up the different slaves in
such a way that a single PST file can be used by all. Mounting a shared disk in the same way
on the master and all the slaves typically allows this to be done easily.

Having many copies of input files is generally not good practice as it is difficult to ensure that
when a change is made to the input files that the changed file is copied to each instance of
the same file on each system. When two or more clusters are used, this is still relatively easy
to manage using a command such as rsync to synchronize files on each cluster with a
master copy. However, to the greatest extent possible, the model runs should be set up to
access the same copy of each input file that is not changed as part of the parameter
estimation process. This is readily achieved using shared file systems on each cluster and
judicious use of path names to allow the master and all the slaves to find the appropriate files.
This in particular applies to the files used by BeoPEST slaves such as the instruction and
template files, which will always be system independent text files, but is equally true for model

input files that are basically read-only to the model.
Starting Slaves for BeoPEST/TCP

When using BeoPEST/TCP, slaves can be started any time after the master has started. The
master will wait indefinitely for slaves to connect if model runs remain. Individual slaves can
be started by logging into slave nodes and manually starting the ppest program in slave
mode. On most clusters, however, the process will be automated.

The runpest Perl script can be used to start the master and multiple slaves on a Linux cluster.
This script will use the cluster login authentication protocol that allows password-less logins to
all nodes in the cluster to start slave programs on each slave node.

Alternately, the master can be started manually and a program such as mpirun used to start
multiple copies of the slave version. Where multiple clusters are tied together, programs such
as mpirun can be used on each cluster, but all referencing the same master.

Note that the port number identifies a specific master. It is possible to have multiple masters
running simultaneously on the same host, each with its own port. Slaves would then connect
to the appropriate master by selecting the desired port.

Security for BeoPEST

When BeoPEST/TCP slaves are run at a remote site, it may be necessary for the slave to
tunnel through firewalls at both the remote and local sites. Typically firewalls are set such that
outgoing TCP/IP connections are not restricted, but this should be verified. Firewalls typically
block incoming connections on unknown ports. Therefore, if port 4004 is used by the master,
it will typically be necessary to allow a connection on port 4004 through the firewall.

The values communicated between the slaves and the master are treated as binary numeric
values. The bits transmitted are therefore always turned into numbers. A malicious agent
could alter these values, which would be catastrophic for the parameter estimation. However,
no alteration to these values could cause programs to be run on either the master or slave
nodes. The BeoPEST master and slave independently determine how many bytes will be
sent and received and will always send or receive only so many bytes. Therefore there is no
risk to sending these values across an insecure link.

User authentication is handled outside of BeoPEST. Since the ppest program is started
manually or using a program such as mpirun, user authentication is handled at that level.

6

The BeoPEST/TCP master program will accept connections from any connecting slave, but
since communications with slaves follow a very strict and limited pattern, the security risk is
low. The worst risk is a denial of service attack, where a malicious agent pretends to be a
client sufficiently closely to delay the master.

A secure connection can always be obtained using the ssh tunneling capabilities.
Scalability issues

BeoPEST was designed to scale well to a large number of clients. With traditional Parallel
PEST, the master process could quickly bog down creating input files and reading
observations from many clients. BeoPEST avoids this by moving this function to the slaves.
This also makes it possible to run slaves at remote sites, because it is no longer necessary for
the master to be able to write to the file system where the slave resides. Parameter and
observation values are transferred between the master and slave as binary values, which
requires very little bandwidth. However, when the master and slave are different
architectures, it may be necessary to swap bytes from little endian to big endian or vice versa.
This burden is also shifted to the slaves by having slaves adopt the byte gender of the master
for all communications.

As a result, as much of the burden as possible for performing the individual model runs are
shifted to the slaves. The master only has to perform the parameter estimation calculations.
At this time, the size of the matrices being inverted are such that a single master process is
not a bottleneck. However, as the number of parameters grow, it may at some point become
necessary to also parallelize the matrix calculations involved in the parameter estimation. For
a very large number of slaves, the Jacobian calculation may become sufficiently quick that
this becomes important, but at this time the Jacobian calculation so dominates the calculation
that parallelizing the master calculations becomes an issue. BeoPEST scales well enough to
handle very large numbers of slaves, but does not implement parallel processing of the matrix
calculations used in the parameter estimation.

The number of slaves to run per physical processor depends on the nature of the problem
being solved. Most model runs are CPU bound, so that one slave per physical processor is
typically the best way to run BeoPEST. Multi-core processors may support one slave per
core. Models that are Input/Output bound may perform better with multiple slaves per
processor so that useful computation can be done while waiting for input or output. What
combination is optimal would depend on the model at hand, but the one slave per physical
processor (or core) is often a good solution.

While the Jacobian is being calculated, the master has little to do. Exchanging parameters
and observations with the slaves requires very little effort from the master. Therefore, in an
environment with few processors, a slave process can actually be run on the some processor
as the master. This will lead to more efficient use of this processor.

When running BeoPEST, the last run with the best parameter can be done on any of the
slaves. This may be inconvenient in that the user may want to view the model output. The
last model run with the best parameters is by necessity a sequential operation. The /L switch
on BeoPEST can be used to always have the master make this last model run itself. This will
place this last model run in the same directory as all the other PEST output files.

Load Balancing

In order to obtain the full benefit of parallel processing, it is necessary to keep as many of the
processors busy doing useful work at all times. Unfortunately, model independent parameter
estimation by definition means that the finest level of granularity is that of a model run. In
addition, the number of model runs than must be made in order to evaluate the Jacobian is
also a function of the number of parameters being estimated.

It can be readily shown that the worst possible situation is when you have n equally fast
processors and there are n+1 runs to be made, since while one processor is working on the
n+1% run, the other n-1 processors are idle. This would suggest that adding one more
processor will greatly increase the efficiency. However, if this is done by adding a really slow
processor, the situation is not helped at all. [f, for example, the last processor takes three
times as long to run the model as the first n processors, the first n processors will complete
their runs and then sit idle for twice as long while the last procesor finishes its run. It would
have been more efficient to have one of those processors complete the n+17% run.

In many cases, the number of model runs are much greater than the number of available
processors. In such a case, adding a relatively slow processor may improve the overall
computational effort because it is able to make a small contribution to the overall amount of
computation that needs to be made. However, if there is one processor that is much slower
than the others, there is a very high probability that the faster processors will exhaust the jobs
to be run and then have to wait while the slow processor completes its last assigned run.
Therefore, it generally doesn't help to add a really slow processor to the slave pool.

A saving grace is that in general model runs are idempotent in the sense that performing the
same run more than once is not a problem. Therefore BeoPEST could potentially assign the

8

last few runs to more than one slaves, and once one of the slaves returns the result, other
slaves can be told to abort their runs. This is currently experimental in BeoPEST. Please
contact the author for details if this is an desirable feature in your work.

BeoPEST example

Consider the following simple example. A one dimensional flow model named t1d is run with
input read from beotest.in, a set of hydraulic conductivities read from beotest.dat, and heads
output to beotest.out. PEST is used to estimate the hydraulic conductivities based on a set
of hydraulic conductivities. The pest control file beopest.pst is shown in Figure 3. The file is
unremarkable except for the model sections. The master is run in the directory /pm/pest/tid.
The /pm file system is mounted on all machines on the local area network.

The model command line reads
/[pm pest/t1ld/t1ld /pnl pest/t1ld/ beotest.in beotest.dat beotest. out

Note that the location of the program t1d and the location of the input file beotest.in is
prefixed by the full path name, so that this command can be executed from any directory on
the system, and the executable and data file will still be found. The hydraulic conductivity file
beotest.dat and model output beotest.out, however, is assumed to be in the current working
directory.

The model input and output section reads
/ pm pest/t1ld/ beotest.tpl beotest. dat
/ pm pest/t1ld/ beotest.ins beotest. out

Note that the template file beotest.tpl and instruction file beotest.ins are also in the directory
where the t1d program, beotest.in and beotest.pst files reside.

To perform the parameter estimation in sequential mode, run pest in the /pm/pest/tid
directory

pest beotest
PEST will perform all the model runs in the local directory, and find those hydraulic
conductivities that result in the heads specified.

To perform the parameter estimation using BeoPEST/MPI using a master and 4 slaves, the
master and slaves are started by running the mpirun program from the /pm/pest/iid
directory as

mpirun -np 5 ppest /pm/pest/tid/beotest /M /tmp/beotest
The directory /tmp/beotestX will be created for each slave process where X is the rank

assigned by MPI. This insures that the files are created in local storage and minimize the
network traffic generated. The master (rank 0) will run in /pm/pest/t1d and all the pest output
files will be saved to that directory. Note that the pest control file is specified using a full path
name so that the pest control file can be found after changing directories.

To perform the parameter estimation using BeoPEST/TCP, the instance of BeoPEST that will
act as the master is started in the /pm/pest/t1d directory on host sherkhan as

ppest beotest /H :4004
Port 4004 is selected as from one of the many unused ports on sherkhan. The program will
start and within a second or so pause with a message RUNNING MODEL FOR FIRST TIME
..... This indicates that PEST needs to run the model.

Clients must now be started to run the model. This can be done one the host alpha by
creating a directory /tmp/1 and making it the current directory. A slave is then started in
tmp/1 as
ppest /pm/pest/tid/beotest /H sherkhan:4004

BeoPEST knows that this is a slave instance because sherkhan:4004 is used to specify the
name of the master host as well as the port. Note that the name of the PEST control file is
given with a full pathname because the slave is run in the directory /tmp/1. Since the model
executable, model data file, template and instruction files in that PEST control file are all
specified using full path names, this instance of PEST is able to locate these files as well.
However, the hydraulic conductivity file beopest.dat created by PEST and the model output
file beopest.out created by the t1d model will reside in /tmp/1. Once this slave is started, the
master will instruct this slave to perform the model runs. The /tmp directory on Unix/Linux
machines is typically fast local storage and is a convenient place to put temporary run files.

Since host alpha actually has two processors, a second instance of BeoPEST can be started.
In order to avoid conflicts between the beopest.dat and beopest.out files, the second slave
is started in the directory /tmp/2. The command used to start BeoPEST is identical
ppest /pm/pest/tid/beotest /H sherkhan:4004

Although the master now sees two clients on host alpha, they are in fact distinct and the
master will ask both instances to perform model runs as needed. In fact, if alpha had two
quad-core processors, it may be able to run eight instances as long as each instance is in a
separate directory.

More slave hosts can also be used. Since /tmp is local storage, the same naming scheme
can be used on hosts beta, gamma, delta, etc. As each instance of BeoPEST is started, it

10

contacts the master and the master will call upon available slaves to perform the model runs.
The master will schedule as many runs as there are available processors, up the maximum
number of runs required to calculate the Jacobian. For the lambda search, the master will
perform partial parallelization of the lambda search using those processors that are faster
than 80% of the fastest processor.

Since BeoPEST uses a parallel lambda search, the result may be slightly different than the
result obtained using the sequential lambda search, but in practice these differences are
insignificant.

11

= | AN File System Access
= |ocal File System Access

——» BeoPEST TCP/IP Messages

_U
) m
_ Local _—— Local 9 Local Local
. . 'y . N .
Files Files o Files Files
——— ——— _;C ——— ———
W\ ——\\ D‘? W\ ——\\
Slave 1 Slave 2 . Slave 3 Slave 4

Figure 1.

Pest Control File
Template Files
Instruction Files
Read—only data Files

Running BeoPEST on a homogeneous LAN.

y—\\

Master

Inte

=\ —\ L\ JZ_\\\
Slave 1 Slave 2 Slave 2 Slave 4 7~

rnet

\
\
\
\
\
N\
AN

Slﬁ@ Sﬂc%ﬂ) S|d%l11 S|d%l12
—— = BeoPEST TCP/IP Messages W
— [AN File System Access
—— file Replication

Figure 2. Running BeoPEST across the Internet.

pcf
* control data
restart estinmtion

10 10 1 0 1
1 1 doubl e point 1 0 0
5.0 2.0 0.3 0.03 10
3.0 3.0 0.001
0.1
30 0.01 3 3 0.01 3

1 1 1
* paraneter groups
Krelative 0.01 0.0 switch 2.0 parabolic
* paraneter data

kO fixed relative 1 1.0e-3 1.0e+t3 K1 0 1
k1 | og relative 1 1.0e-3 1.0e+t3 K101
k2 | og relative 1 1.0e-3 1.0e+t3 K1 0 1
k3 | og relative 1 1.0e-3 1.0e+t3 K1 0 1
k4 | og relative 1 1.0e-3 1.0e+t3 K1 0 1
k5 | og relative 1 1.0e-3 1.0e+t3 K1 0 1
k6 | og relative 1 1.0e-3 1.0et3 K1 0 1
k7 | og relative 1 1.0e-3 1.0et3 K1 0 1
k8 | og relative 1 1.0e-3 1.0et3 K1 0 1
k9 fixed relative 1 1.0e-3 1.0e+t3 K1 0 1
* observation groups

H

* observation data

hO 100. 000000 1.0 H

hl 95.532507 1.0 H

h2 82.867842 1.0 H

h3 69. 871063 1.0 H

h4 66. 179196 1.0 H

h5 62.176584 1.0 H

h6 56.569212 1.0 H

h7 50. 553210 1.0 H

h8 41.861036 1.0 H

h9 20. 000000 1.0 H

* model command |ine

/[pm pest/tild/t1ld /pnipest/tld/ beotest.in beotest.dat beotest.out
* nodel input/output

[/ pm pest/t1d/ beotest.tpl beotest.dat

/ pm pest/t1d/ beotest.ins beotest. out

* prior information

Figure 3. Pest Control File.

