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Motivation

* Calculating the Jacobian requires many runs
~ Runs are independent
~ Order of runs are not important
~ Runs are idempotent
* Embarrassingly parallel problem
~ Naturally parallel
- Implemented in ppest
* Beowulf clusters are attainable
- Office PCs are idle 16 hours per day



Original ppest limitations
* ppest master process does all the work

- select parameters
~ write model input files
- read model output files

* |ssues

~ master bogs down reading and writing files
- must be on a shared file system

~ file system based communications
* must be synchronous to be correct, implies slow
* file system performance can be a bottleneck

* ppest does not scale well to many machines



Features of BeoPEST

* Smart slaves
- Master just selects parameters
- Slave reads and writes model files

* Communication via TCP/IP or MP
~ Direct, reliable communication
- Slaves can be on an internet
* Fault tolerant
- Failed slaves does not effect master
* Heterogeneous
- Mix Windows/MacOS/Unix/Linux

 Scales well to thousands of slaves



Smart Slaves

* Same executable as master with slave flag
* Reads the same .pst file as the master
* Waits for master to request a run

- Recelive parameters from master (binary)
~ Writes model input file (local disk access)
-~ Runs model (local writes only)

- Reads model output file (local disk access)
~ Sends observations to master (binary)

* Master and slaves sleep while idle (no CPU)



TCP/IP or MPI

* TCP/IP is well suited to ad hoc clusters

- Reliable transport protocol

- Slaves added at any time by connecting to master
- Failed slave detected by dropped connection

-~ Works on LAN and over the internet

* MPI is well suited to supercomputers

- MPI infrastructure to start and manage slaves
~ Can use fast interconnects
~ Currently not fault tolerant, rarely heterogeneous



Running BeoPEST

* Using file system communications (needs .rmf)
- ppest foo.pst

* Using TCP/IP (master host sherkhan port 4004)

- Master: ppest foo.pst /H :4004
- Slaves: ppest foo.pst /H sherkhan:4004

* Using MPI (1024 processes, directory /tmp/xxx)
~ mpirun -np 1024 ppest foo.pst /M /tmp/



Communications

* Values sent as 8 byte binary numbers

- 8*Npar master to slave
- 8*Npar + 8*"Nobs slave to master

* One message each way per model run

- Latency measured in milliseconds

- Slave does blocking read, starts immediately after
the last parameter is received

- Master does non-blocking read, scans active slaves
every dms for completion



Run Management

* Master schedules jobs to run on idle slaves

-~ Newly added slave immediately put to work
~ Job rescheduled if slave fails

* Managing jobs on master uses little CPU
* |dle slaves uses no CPL

* Naive scheduling algorithm

~ Picks fastest idle slave for next job
~ Next job scheduled as soon as slave becomes idle
~ Jobs run in order



File Management

* Each slave slave has its own writable directory

~ Used by slave to create model input files
- Used to store model output files

- Does not have to be visible from master
- Best if on local slave file system

* Read-only global file system
- Master and slaves can share .pst/.tpl/.ins files
~ Common model files not touched by PEST

- Ensures files are always consistent
~ A bit tricky to get all the file names right
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Figure 1. Running BeoPEST on a homogeneous LAN.
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Running BeoPEST across the Internet.



Security

With BeoPEST/TCP user logs in to each slave
Programs to run are controlled by .pstfile

Information send between master and slaves
are only parameter and observation values

— Data are treated as numeric values and cannot be
used to inserts symbols

- Man-in-the-middle modification just corrupts
optimization process

Does require one port to tunnel through firewall



Ongoing work

* Single PEST executable
- flags control sequential, old parallel, TCP/IP or MPI
* Smarter scheduling and load balancing

~ Very slow slaves can hold up completion

* schedule jobs on multiple slaves
* kill others when the first one finishes

- Look-ahead scheduling (instead of greedy)

* Teaching John how to pronounce matrix



Obtaining BeoPEST

* Emall:
* Web Site:

- Documentation
— Source code
— Executables

* Linux
* OSX

* Current version PEST 11.13
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And they lived happily ever after.
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