Parallel PEST
Using BeoPEST

Willem A. Schrelder

Princpia Mathematica Inc

University of Colorado at Boulder

PEST Conference
November 3, 2009


mailto:willem@prinmath.com

Motivation

* Calculating the Jacobian requires many runs
~ Runs are independent
~ Order of runs are not important
~ Runs are idempotent
* Embarrassingly parallel problem
~ Naturally parallel
- Implemented in ppest
* Beowulf clusters are attainable
- Office PCs are idle 16 hours per day



Original ppest limitations
* ppest master process does all the work

- select parameters
~ write model input files
- read model output files

* |ssues

~ master bogs down reading and writing files
- must be on a shared file system

~ file system based communications
* must be synchronous to be correct, implies slow
* file system performance can be a bottleneck

* ppest does not scale well to many machines



Features of BeoPEST

* Smart slaves
- Master just selects parameters
- Slave reads and writes model files

* Communication via TCP/IP or MP
~ Direct, reliable communication
- Slaves can be on an internet
* Fault tolerant
- Failed slaves does not effect master
* Heterogeneous
- Mix Windows/MacOS/Unix/Linux

 Scales well to thousands of slaves



Smart Slaves

* Same executable as master with slave flag
* Reads the same .pst file as the master
* Waits for master to request a run

- Recelive parameters from master (binary)
~ Writes model input file (local disk access)
-~ Runs model (local writes only)

- Reads model output file (local disk access)
~ Sends observations to master (binary)

* Master and slaves sleep while idle (no CPU)



TCP/IP or MPI

* TCP/IP is well suited to ad hoc clusters

- Reliable transport protocol

- Slaves added at any time by connecting to master
- Failed slave detected by dropped connection

-~ Works on LAN and over the internet

* MPI is well suited to supercomputers

- MPI infrastructure to start and manage slaves
~ Can use fast interconnects
~ Currently not fault tolerant, rarely heterogeneous



Running BeoPEST

* Using file system communications (needs .rmf)
- ppest foo.pst

* Using TCP/IP (master host sherkhan port 4004)

- Master: ppest foo.pst /H :4004
- Slaves: ppest foo.pst /H sherkhan:4004

* Using MPI (1024 processes, directory /tmp/xxx)
~ mpirun -np 1024 ppest foo.pst /M /tmp/



Communications

* Values sent as 8 byte binary numbers

- 8*Npar master to slave
- 8*Npar + 8*"Nobs slave to master

* One message each way per model run

- Latency measured in milliseconds

- Slave does blocking read, starts immediately after
the last parameter is received

- Master does non-blocking read, scans active slaves
every dms for completion



Run Management

* Master schedules jobs to run on idle slaves

-~ Newly added slave immediately put to work
~ Job rescheduled if slave fails

* Managing jobs on master uses little CPU
* |dle slaves uses no CPL

* Naive scheduling algorithm

~ Picks fastest idle slave for next job
~ Next job scheduled as soon as slave becomes idle
~ Jobs run in order



File Management

* Each slave slave has its own writable directory

~ Used by slave to create model input files
- Used to store model output files

- Does not have to be visible from master
- Best if on local slave file system

* Read-only global file system
- Master and slaves can share .pst/.tpl/.ins files
~ Common model files not touched by PEST

- Ensures files are always consistent
~ A bit tricky to get all the file names right



—=— LAN File System Access
— == Local File System Access

— = BeoPEST TCP/IP Messages -

i
m
Local Local & ﬂ Local Local
Files - Files - o Files - Files -
— —— T 'E C — T —
D_-.-
(-, N T2 /-y, (-,
. Slave 3 Slave 4

Slave 1 Slave 2

Pest Control Flle
Template Filas

Instruction Files
Read—only data Files

Figure 1. Running BeoPEST on a homogeneous LAN.



Master

!
—x —
Slave 1 Slave 2

Slave Z

Slave 4

I |

¥
o
=
4]
th

L

v
g
-«
L 1]
@

|

m

th
a
<=
u1]
o]

LI— S S LI
Slave 9 Slave 10 Slave 11 Slave 12

—= BeoPE3T TCP/IP Messages W

—= AN File 3System Access
—= Ffile Replication

Figure 2.

v

Running BeoPEST across the Internet.



Security

With BeoPEST/TCP user logs in to each slave
Programs to run are controlled by .pstfile

Information send between master and slaves
are only parameter and observation values

— Data are treated as numeric values and cannot be
used to inserts symbols

- Man-in-the-middle modification just corrupts
optimization process

Does require one port to tunnel through firewall



Ongoing work

* Single PEST executable
- flags control sequential, old parallel, TCP/IP or MPI
* Smarter scheduling and load balancing

~ Very slow slaves can hold up completion

* schedule jobs on multiple slaves
* kill others when the first one finishes

- Look-ahead scheduling (instead of greedy)

* Teaching John how to pronounce matrix



Obtaining BeoPEST

* Emall:
* Web Site:

- Documentation
— Source code
— Executables

* Linux
* OSX

* Current version PEST 11.13


mailto:willem@prinmath.com
http://www.prinmath.com/pest/

And they lived happily ever after.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

