CSCI 4229/5229 Computer Graphics Fall 2007

Instructor

- Willem A (Vlakkies) Schreüder
- Email: willem@prinmath.com
 - Begin subject with 4229 or 5229
 - Resend email not answered promptly
- Office Hours:
 - Before and after Class
 - By appointment
- Weekday Contact Hours: 6:30am 9:00pm

Course Objectives

- Class: Theory and principles
 - Attendance is encouraged
- Assignments: Practical OpenGL
 - Applications
- No tests or exams
- By the end of the course you will:
 - Be conversant in computer graphics principles
 - Be well versed in the use of OpenGL
 - Understand what OpenGL does internally

Course Outline

- Basics (1/3)
 - Projections, transformations, clipping, rendering, text, color, hidden edge and surface removal, and interaction
- Advanced (1/3)
 - Illumination, shading, transparency, texture mapping, parametric surfaces, shaders
- Project (1/3)
 - Whatever you're interested in: games, modeling, visualization, 'Google Earth',

Why OpenGL?

- Modern, widely used and actively supported
 - Games
 - 3D visualization
- Cross platform
 - Windows
 - Mac
 - *NIX
- Open source and vendor implementations

- MESA 3D (source code available)

• Many language bindings

Assumptions

- You need to be fluent in C
 - Examples are in C
 - You can do assignments in any language
 - I may need help getting it to work on my system
- You need to be comfortable with linear algebra
 - Matrix and Vector multiplication
 - Dot and cross products
 - Rotation matrices

Grading

• Satisfactory complete all assignments => A

- The goal is to impress your friends

- Assignments must be submitted on time unless prior arrangements are made
 - Due Thursday evening 11:59 pm
 - Grace period until Friday morning at 06:30am
- Assignments must be completed individually
 - Stealing ideas are permitted
 - OpenGL code fragments from the web may be used

Text

- OpenGL: A Primer, 3/E
 - Edward Angel
 - An excellent and very accessible introduction to OpenGL -and inex pensive
 - Third edition adds new material including shaders
 - Recommended but not required
- Computer Graphics: Principles & Practice (2ed)
 - Foley, van Dam, Feiner & Huges
 - Avoid 1ed (Pascal), 2ed also a bit dated
 - Get it if you want to know more of the theory

Other Texts

- OpenGL Programming Guide (5ed)
 - Shreiner, Woo, Neider & Davis
 - "OpenGL Red Book"
 - Download previous editions as PDF
- OpenGL SuperBible: Comprehensive Tutorial and Reference (4ed)
 - Wright, Lipchak & Haemel
 - Good all-round theory and applications

And More Texts

- OpenGL Shading Language (2ed)
 - Randi J. Rost
 - "OpenGL Orange Book"
 - Introduces both OpenGL and Shaders
- OpenGL Reference Manual (4ed)
 - OpenGL Architecture Review Board & Dave Shreiner
 - "OpenGL Blue Book"
 - Official Reference Document to OpenGL, Version 1.4
 - A bit dated, very similar to man pages

OpenGL Resources

- www.google.com
 - Need I say more?
- www.opengl.org
 - Code and tutorials
- nehe.gamedev.net
 - Excellent tutorials
- www.mesa3d.org
 - Code of "internals"

Assignment 0

- Due: Wednesday Sep 5, 2007
- Sign up with moodle.cs.colorado.edu
 - Enrollment key: 42295229
 - A picture will help me learn your names
- Submit
 - Your name and study area
 - Platform (Hardware, Graphics, OS, ...)
 - Background and interests in computer graphics
 - Project ideas (if you have one already)

My information

- Mathematical modeling and data analysis
 - PhD Computational Fluid Dynamics [1986]
 - PhD Parallel Systems (*CU Boulder*) [2005]
 - President of *Principia Mathematica*
- Use graphics for scientific visualization
- Open source bigot
- Program in C, C++, Fortran and Perl

Assignment 1

- Due: Thursday Sep 13, 2007
- Get OpenGL to work on your platform
 - Compile and run *gears.c*
 - Report frame rate for 1x1, 300x300 and full screen
 - Explain your results
- If you are on an X based (*NIX) platform:
 - Run glxinfo and check if *direct rendering: yes*
 - Look into enabling hardware support

Assignment 2

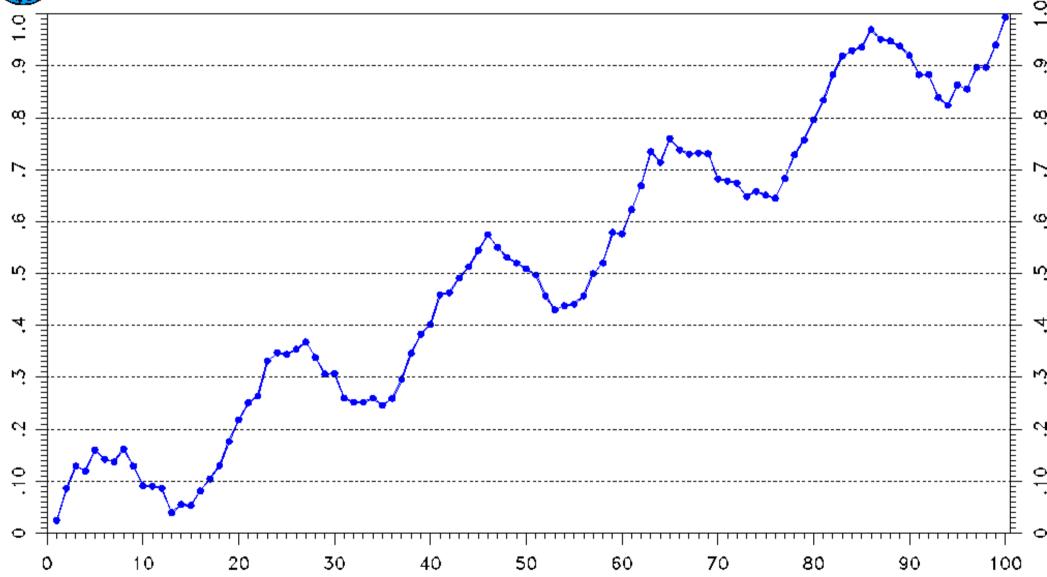
- Due: Sep 20, 2007
- Write an OpenGL based visualization of the Lorenz Attractor
 - At a minimum show a static line path in 3D
 - Add rotation using cursor keys
 - Use your imagination
- The purpose is scientific visualization
 - Do some science

http://mathworld.wolfram.com/LorenzAttractor.html

Nuts and Bolts

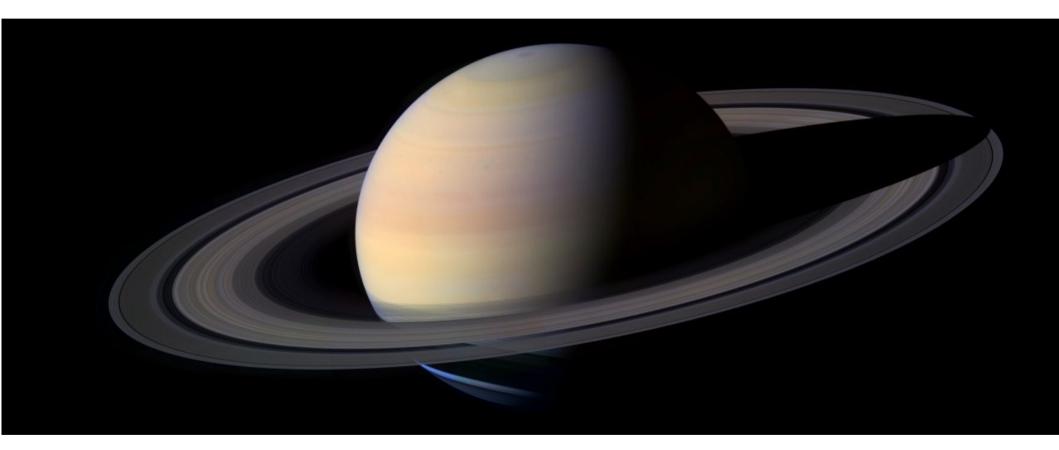
- Complete assignments on any platform
 - Assignments reviewed under Fedora Core
 - Set #ifdef so I can compile and run it
- Submit using moodle.cs.colorado.edu
 - ZIP or TAR
 - Name executables hw1, hw2, ...
 - Set makefile so I can do *make LINUX=1*
 - Set window title to Assignment X: Your Name
- Include number of hours spent on assignment

A few hints


- My machine runs Fedora Core x86_64
 - gcc/g++ with Mesa3D & GLX
 - -Wall is a really good idea
 - case sensitive file names
 - int=32bit, long=64bit
 - little-endian
 - fairly good performance
- How to make my life easier
 - Try it in CSEL or a Linux box
 - Stick to C/C++ unless you have a good reason

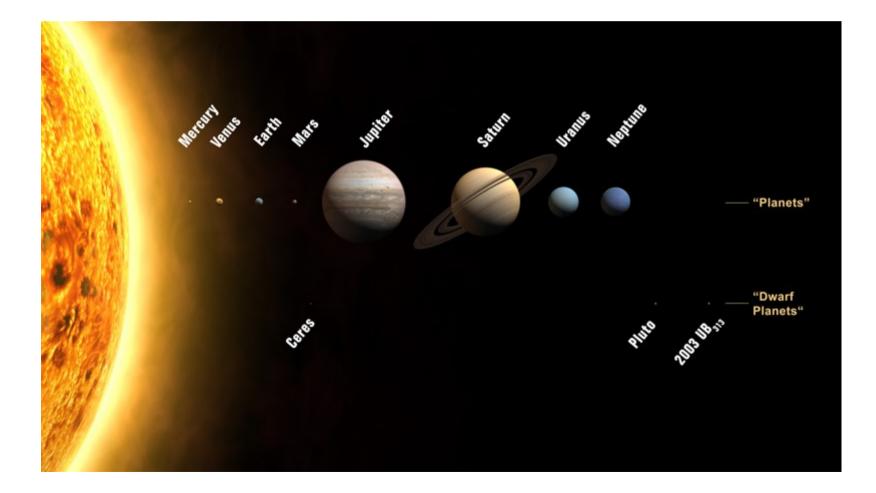
The Importance of Graphics: 100 Values between 0 and 1

100 Values between 0 and 1


The Importance of Graphics

Graphic Design

- 2D vs. 3D
 - Cool vs. informative
- Edward R. Tufte
 - Visual Explanations
 - Envisioning Information
 - The Visual Display of Quantitative Information
 - Beautiful Evidence


Saturn from Cassini Probe

Colorado Fall Colors

What is wrong with this picture?

In the beginning....

Storage Tube Terminals

Storage Display Images

Color: Multiple Pen Plotters

Raster Graphic Terminals

Color Inkjets

Workstations: Apollo DN 330 12 MHz 68020, 3MB RAM, 70MB disk

Plotting Packages

- PLOT-10: Tektronix 4010 graphics
- PLOT88: PC graphics
- DISSPLA: NCAR graphics
- GINO: Portable graphics
- DIGLIB: LLNL device-independent, open source
- GKS: Graphics Kernel System (2D vector)
- PHIGS: 3D Interactive Graphics

The rise of OpenGL

- Originated as SGI IrisGL
- Vendor-neutral OpenGL controlled by ARB
- Hides the details of hardware
 - Software emulation when necessary
 - Hardware acceleration when possible
- Supports 2D to advanced 3D graphics
- Portable to most hardware and OS with WGL, AGL and GLX

Gaming and Graphics

- Text based/ASCII graphics (Pong, PacMan)
- 2D monochrome line graphics (Astroids)
- 2D images & sprites (Mario)
- 3D graphics
 - Flight Simulators (2D -> 3D)
 - First Person Shooters
 - Multi-player games
- Games push the envelope
 - Realism
 - Speed