

Parametric
Curves

CSCI 4229/5229
Computer Graphics

Fall 2017

Parametric Curves

● x(t) = p
x
(t), y(t) = p

y
(t), z(t) = p

z
(t), w(t) = p

w
(t)

● Often p(t) is a polynomial

● Generally t in [0,1]

● Avoids problems such as lines parallel to axes

● Works for any number of dimensions

● Can be used to generate vertexes, colors, texture
coordinates, normals, etc.

Bernstein Polynomials

● Bernstein Polynomials

– B
i
n(t) = (

i
n)ti(1-t)n-i

● Sums to one ∑
i=0

n B
i
n(t)=1

● Cubic Bernstein Polynomials

– B
0

3(t) = (1-t)3

– B
1

3(t) = 3t(1-t)2

– B
2

3(t) = 3t2(1-t)

– B
3

3(t) = t3

Cubic Bernstein Polynomials

Bézier Curves

● C
n
(t) = ∑

i=0
n B

i
n(t) P

i
,

 t ∈ [0,1]

● P
i
 are points in 2D, 3D or 4D

● Convex linear combination of points P
i

– Entire curve is in convex hull of points (∑
i=0

n B
i
n(t)=1)

– B
0

n(0) = 1, so starts at P
0

– B
n
n(1) = 1, so ends at P

n

– Tangential to P
0
-P

1
 and P

n
-P

n-1

● Curve is smooth and differentiable

Curves in OpenGL

● One-dimensional Evaluators
● Can be used to generate vertexes,

normals, colors and textures
● Curve defined analytically using Bezier

curves
● Evaluated at discrete points and rendered

using straight line segments

Curves in OpenGL

● glEnable()
– Enables types of data to generate

● glMap1d()
– Defines control points and domain

● glEvalCoord1d()
– Generates a data point

● glMapGrid1d() & glEvalMesh1()
– Generates a series of data points

● Deprecated in OpenGL (do this manually)

glMap1d(type,Umin,Umax,stride,order,points)

● type of data to generate

– GL_MAP1_VERTEX_[34]
– GL_MAP1_NORMAL
– GL_MAP1_COLOR_4
– GL_MAP1_TEXTURE_COORD_[1-4]

● Umin&Umax are limits of parameter(often0&1)

● stride is the number of coordinates in data (3 or 4)

● order is the order of the curve (4=cubic)

● points is the array of data points

● Remember to also call glEnable()

glEvalCoord1d(u)

● Generate one vertex for each glMap1d()
type currently active (e.g. texture,
normal, vertex)

● To generate the whole curve, call
glEvalCoord1d() once for each vertex

● Exercise entire parameter space
– u from Umin to Umax (0 to 1)

Generating a complete curve

● glMapGrid1d(N , U1 , U2)
● glEvalMesh1(mode , N1 , N2)
● This is equivalent to

glBegin(mode);

for (i=N1;i<=N2;i++)

 glEvalCoord1(U1 + i*(U2-U1)/N);

glEnd();

Interpolation with Bézier Curves

● We have 4 points we want the curve to
pass through P

0
, P

1
, P

2
 & P

3

● What should control points R
0
, R

1
, R

2
 & R

3

be?

Relationship between P and R

Bézier Interpolation Matrix

● Selected so t=1/3 and t=2/3 maps to P
1
 & P

2

● Local function (depends only on P
0
,P

1
,P

2,
P

3
)

Extending to More Points

● Two curves P
0
,P

1
,P

2
,P

3
 and P

4
,P

5
,P

6
,P

7

● Bézier curves pass through P
0
&P

3
 and

P
4
&P

7
, so the curve will be continuous of

P
3
=P

4

● Bézier curves are tangential to P
1
-P

0
& P

2
-

P
3
and P

5
-P

4
 & P

6
-P

7
, so the curve will be

smooth if P
3
=P

4
 and P

2
-P

3
and P

5
-P

4
,

therefor P
5
 = 2P

3
-P

2

Splines

● Traditionally a long, thin, flexible piece of
wood or metal used to describe a smooth
curve
– Used in building boats, airplanes, etc.

● Held down by ducks or whales
● Mathematical equivalents:

– Natural Cubic Spline
– Weights called knots
– Piecewise polynomial

Parametric Splines

● Three or four splines, one for each
component

● Parameter t reach integer values at each
knot
– Cardinal spline

● Natural Cubic Spline
● Clamped Cubic Spline
● Quadratic Spline
● Hermite Spline

Cardinal Cubic Spline

Cardinal Cubic Spline

● Requires solution of tri-diagonal matrix
● Global (all knots impact everywhere)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

