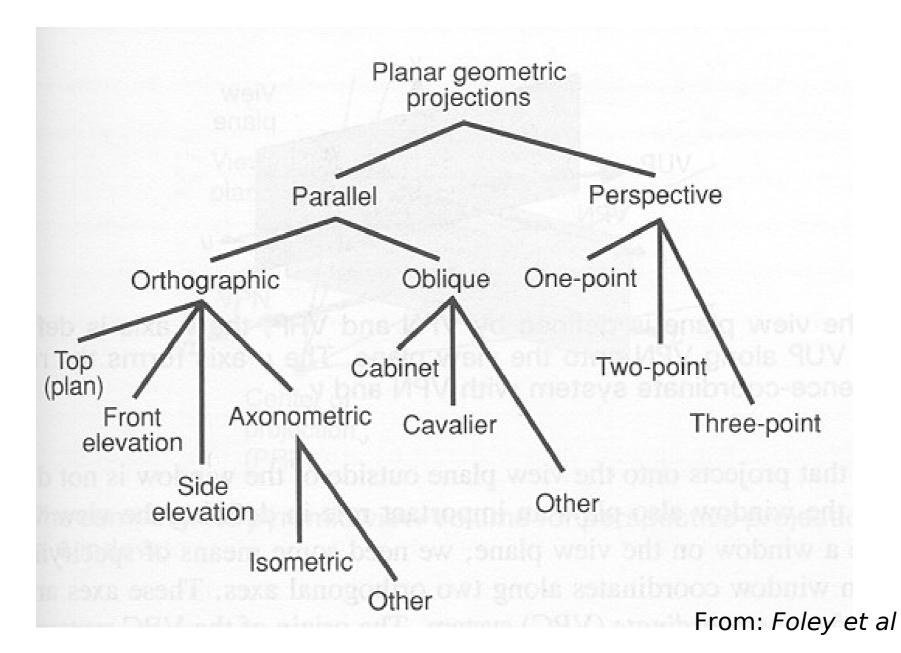
Drawing in 3D Projections

CSCI 4229/5229 Computer Graphics Fall 2021

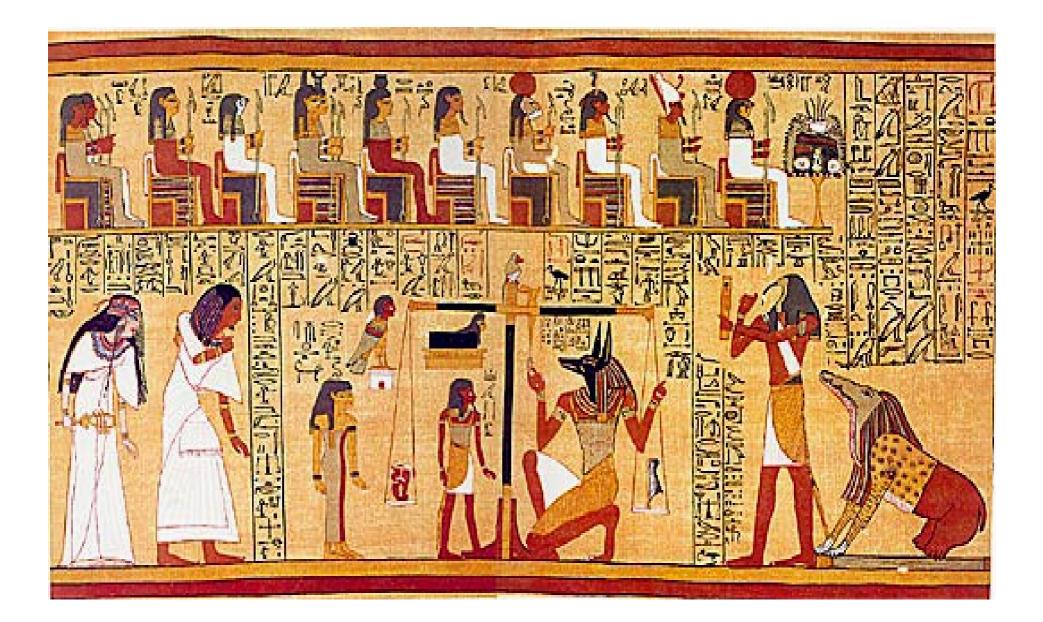
Types of Projections

- Parallel Projections
 - Orthogonal, isometric, ...
 - Size does not diminish with distance
- Perspective
 - Realistic based on an observer's point of view
 - Nearer bigger, farther smaller
 - One or more vanishing points

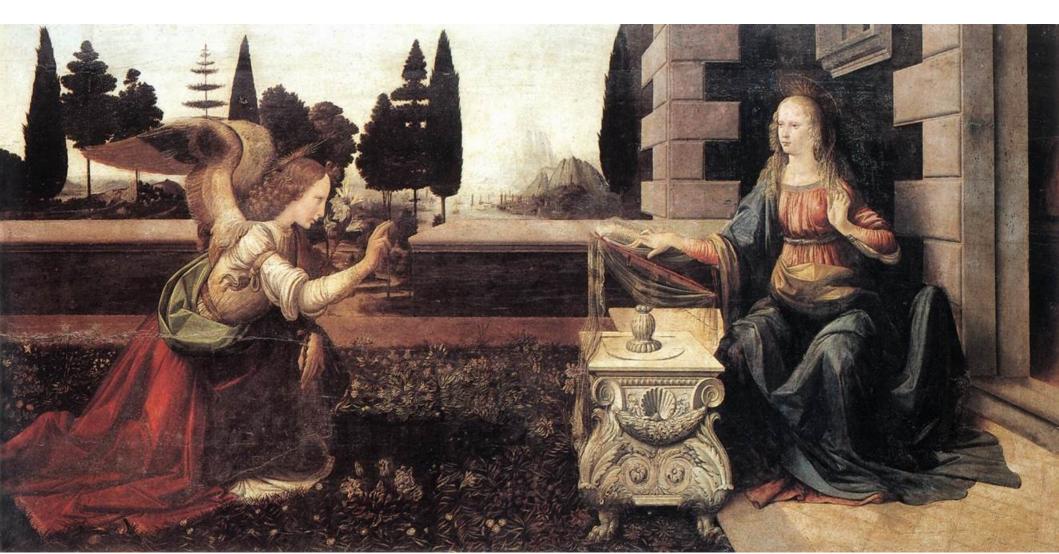
Taxonomy of Projections

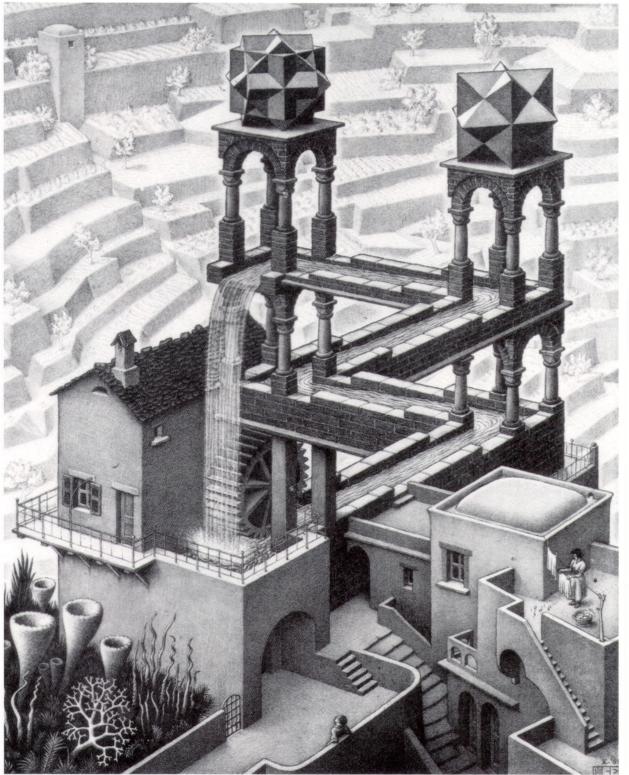


Egyptian Tomb Painting



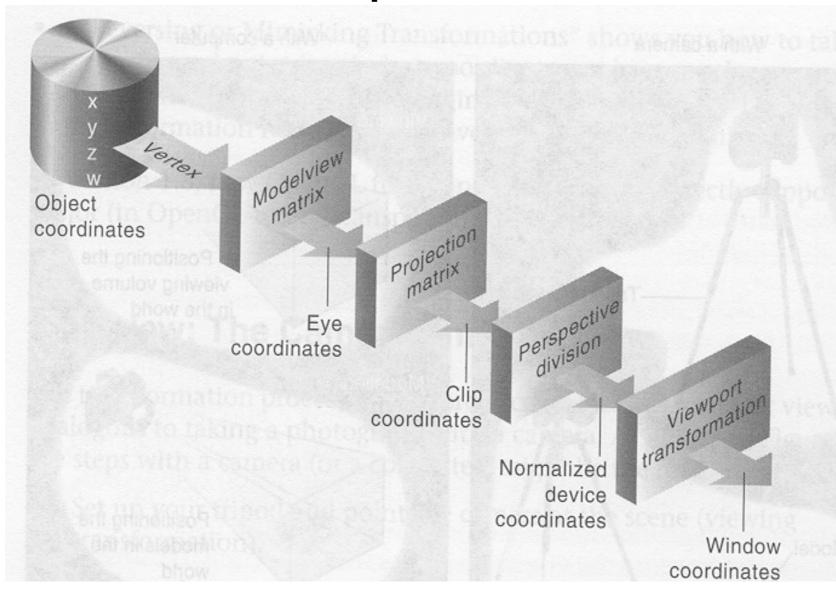
Annunciation Leonardo da Vinci (1472)





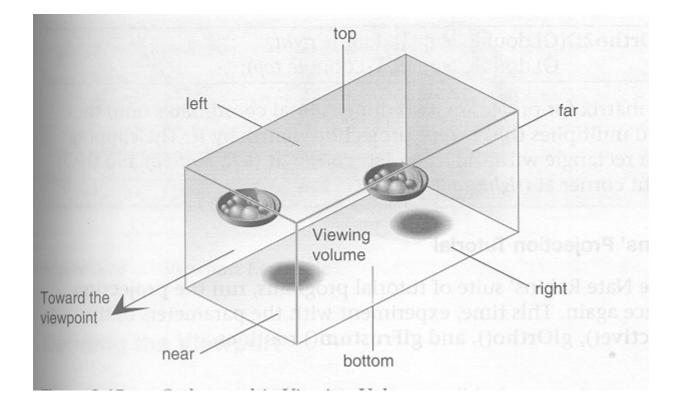
Waterfall M.C. Escher (1961)

OpenGL Transformation Pipeline



Parallel Projection

- Apply rotation matrix to map direction of projection to Z axis and up to Y axis
- Scale to canonical volume



From: OpenGL Red Book

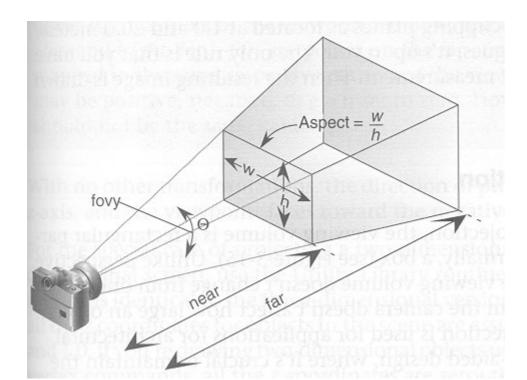
 $glortho(x_{min}, x_{max}, y_{min}, y_{max}, z_{min}, z_{max})$

glOrtho Projection Matrix

$$\begin{pmatrix} \frac{2}{x_{max} - x_{min}} & 0 & 0 & -\frac{x_{max} + x_{min}}{x_{max} - x_{min}} \\ 0 & \frac{2}{y_{max} - y_{min}} & 0 & -\frac{y_{max} + y_{min}}{y_{max} - y_{min}} \\ 0 & 0 & \frac{-2}{z_{max} - z_{min}} & \frac{z_{max} + z_{min}}{z_{max} - z_{min}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

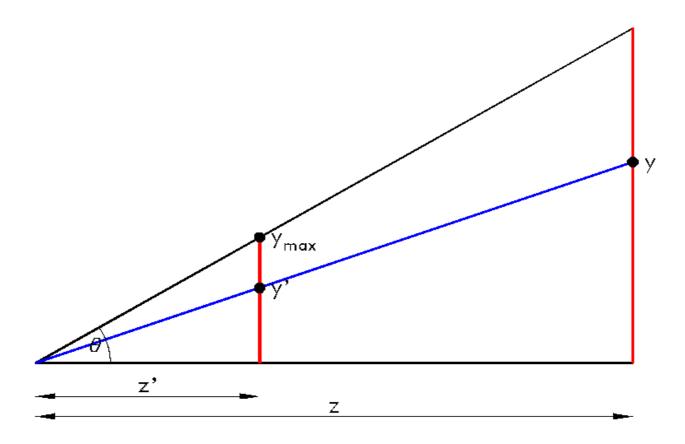
Perspective Transformation

- Apply rotation matrix to map eye position to center of scene to negative Z and up to Y axes
- Scale (x,y) inversely proportional to distance
- Scale to canonical volume



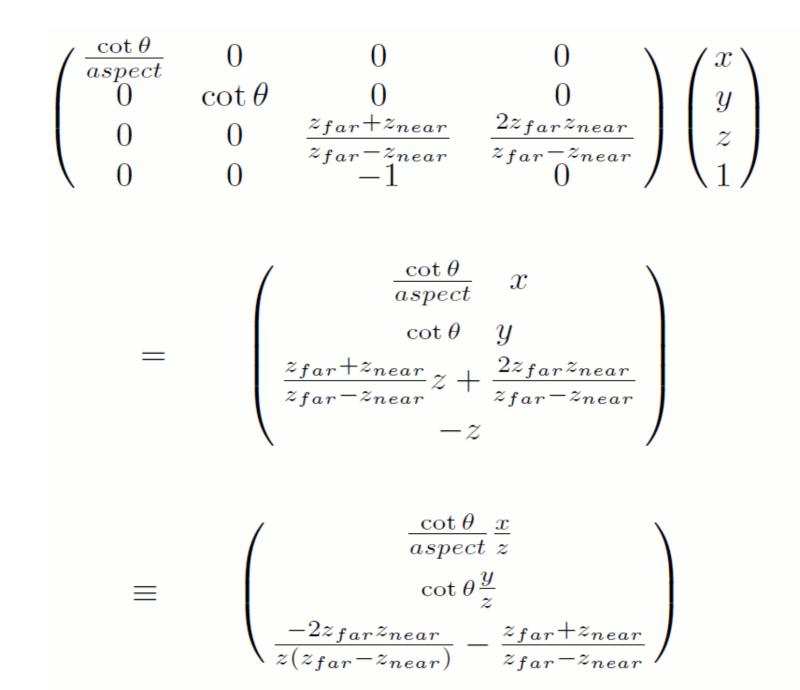
From: OpenGL Red Book

Perspective Transformation



Similar triangles: y'/z' = y/z, so y' = y/z z'Let $y_{max} = 1$ (NDC), tan $\theta = y_{max} / z'$, $z' = \cot \theta$ $y' = \cot \theta y/z$

Homogeneous Perspective Multiply



gluPerspective(fovy,aspect,Znear,Zfar)

- *fovy* is the angle in the up/down direction
- *aspect* is is the horizontal to vertical ratio
- *Znear* is the distance to the near clipping plane
 - Killer fact Znear > 0
- *Zfar* is the distance to the far clipping plane
 - Zfar > Znear
- Zfar-Znear determines Z resolution since the Z buffer has finite precision
 - $-\log_2(Zfar/Znear)$ bits lost

gluPerspective(fovy,aspect,Znear,Zfar)

Let $\theta = fovy/2$

gluPerspective Projection Matrix

$$\begin{pmatrix} \frac{\cot\theta}{aspect} & 0 & 0 & 0\\ 0 & \cot\theta & 0 & 0\\ 0 & 0 & -\frac{z_{far}+z_{near}}{z_{far}-z_{near}} & \frac{2z_{far}z_{near}}{z_{far}-z_{near}}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

gluLookAt(E_x, E_y, E_z , C_x, C_y, C_z , U_x, U_y, U_z)

- $(E_{x'}, E_{y'}, E_{z})$ is the eye position
- (C_x, C_y, C_z) is the position you look at
- (U_{x}, U_{y}, U_{z}) is the up direction
- C-E determines the distance in the Z direction
- The Z distance to each object (from E) determines the reduction in the (x,y) direction

gluLookAt(E_x, E_y, E_z , C_x, C_y, C_z , U_x, U_y, U_z)

Forward	$\mathbf{F} = \mathbf{C} - \mathbf{E}$
Sideways	$\mathbf{S}=\mathbf{F}\times\mathbf{U}$
Up	$\mathbf{U}=\mathbf{S}\times\mathbf{F}$

$$\begin{pmatrix} x'\\y'\\z'\\w' \end{pmatrix} = \begin{pmatrix} S_x & U_x & -F_x & 0\\S_y & U_y & -F_y & 0\\S_z & U_z & -F_z & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -E_x\\0 & 1 & 0 & -E_y\\0 & 0 & 1 & -E_z\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\w \end{pmatrix}$$
$$= \begin{pmatrix} S_x & U_x & -F_x & -E_xS_x - E_yU_x + E_zF_x\\S_y & U_y & -F_y & -E_xS_y - E_yU_y + E_zF_y\\S_z & U_z & -F_z & -E_xS_z - E_yU_z + E_zF_z\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\w \end{pmatrix}$$

(F and U must be normalized)

First Person Navigation

- Decide where you are $(E_{x'}, E_{y'}, E_{z})$
- Decide which way you are looking

$$-(C_{x'}C_{y'}C_{z}) = (E_{x'}E_{y'}E_{z}) + (d_{x'}d_{y'}d_{z})$$

- Decide up, e.g. (0,0,1)
- Move forward to new position

$$-(E_{x'}E_{y'}E_{z}) + = dt^*(d_{x'}d_{y'}d_{z})$$

• Turn left and right using angle

$$- (d_{x'}d_{y'}d_{z}) = (\cos\theta, \sin\theta, 0)$$