

Introduction
to OpenGL

CSCI 4229/5229
Computer Graphics

Fall 2025

History of Graphics Libraries
● PLOT-10: Tektronix 4010 graphics
● PLOT88: PC graphics
● DISSPLA: NCAR graphics
● GINO: Portable graphics
● DIGLIB: LLNL device-independent, open source
● GKS: Graphics Kernel System (2D vector)
● PHIGS: 3D Interactive Graphics
● OpenGL & DirectX

The rise of OpenGL
● Originated as SGI IrisGL
● Vendor-neutral OpenGL controlled by ARB
● Hides the details of hardware

– Software emulation when necessary
– Hardware acceleration when possible

● Supports 2D to advanced 3D graphics
● Portable to most hardware and OS with WGL, AGL and

GLX
● Hardware range from phones to Big Iron

Focus of OpenGL
● OpenGL 1 (1992)

– Hardware abstraction
● OpenGL 2 (2004)

– Add Shaders (Programming the GPU)
● OpenGL 3 (2008)

– Focus on shaders and new hardware
– Deprecates many features

● OpenGL 4 (2010)
– Core & Compatibility Profiles
– Merge desktop and embedded versions

Gaming and Graphics
● Text based/ASCII graphics (Pong, PacMan)
● 2D monochrome line graphics (Astroids)
● 2D images & sprites (Mario)
● 3D graphics

– Flight Simulators (2D -> 3D)
– First Person Shooters
– Multi-player games

● Games push the envelope
– Realism
– Speed

OpenGL by Example
● Learn OpenGL by reading
● nehe.gamedev.net
● lighthouse3d.com

– Excellent free tutorials
● OpenGL: A Primer (3ed) by Edward Angel

– Short and sweet
● OpenGL Programming Guide (Vermillion Book)

– Free older editions as PDF
● OpenGL Superbible

– Theory and Applications

What is OpenGL?
● Sometimes called a library, actually an Application

Programming Interface (API)
● Specification is controlled by Kronos
● Multiple implementations by different vendors

– Mesa & FreeGLUT free implementations
● OpenGL just does real time graphics

– Need GLX/WGL/AGL for windowing and input
– Limited font support (in GLUT)
– No sound, printing, etc. support

OpenGL Versions
1.0 Initial release (1992)
1.1 Major upgrade (1997)

– Latest version on some Windows system
1.2 Improves textures (1998)
1.3-1.5 Incremental improvements (2001-2003)
2.0 Relaxes restrictions, adds shader (2004)
2.1-2.3 Incremental improvement (2006-7)
3.0 Support advanced hardware features (2008)
3.1-3.3 Improved shaders (2009)
4.0 Merge desktop and devices (2010)
4.1-4.6 Additional shaders

OpenGL Deprecation
● I will mostly use OpenGL 2.0

– Feature rich, flat learning curve
– I will use GL3 or GL4 only as needed

● OpenGL Core Profile concentrates on rendering
– Improved execution time performance

● User must provide deprecated functionality
– Steepens the learning curve
– Deprecated features in Compatibility Profile
– Increases reliance on third party libraries
– Adds development time until tools mature

OpenGL APIs
● Languages

– C, C++, C#
– FORTRAN
– Java
– Perl
– Python
– Ada

● Packages
– Qt (QOpenGLWidget)
– SDL, glfw, etc
– Many others

OpenGL and Friends

From OpenGL: A Primer

OpenGL on X11

From OpenGL: A Primer

GLU: OpenGL Utility
● Higher Level and Convenience Functions

– Projections
– Creating texture maps
– NURBS, quadrics, tessalation
– Predefined objects (sphere, cylinder, teapot)

● Collections of calls for convenience
● Standard with all OpenGL implementations

GLUT: GL Utility Toolkit
● Provides access to OS and Window System

– Open windows and setting size and capabilities
– Register and triggers callbacks
– Keyboard and mouse interaction
– Elementary fonts

● Not part of OpenGL, but provides a portable abstraction
of the OS
– FreeGLUT
– OpenGLUT

● Alternatives: SDL, Qt, glfw, ...

Header Files and Libraries
● Usually you only need

– #define GL_GLEXT_PROTOTYPES
– #include <GL/glut.h>

● Header file locations
– /usr/include/GL on most systems

● Linking may only need
– -l glut -l GLU -lGL

● Special cases
– OS/X separates GL and GLUT
– Windows differs depending on the compiler

OpenGL Naming Convention
● glSomethingNt()

– Something is the name of the function
– N is 2 or 3 or 4 for the dimension
– t is for the the variable type

● b GLbyte (signed char) 8 bit
● s GLshort (signed short) 16 bit
● i GLint (signed int) 32 bit
● ub GLubyte (unsigned char) 8 bit
● us GLushort (unsigned short) 16 bit
● ui GLuint (unsigned int) 32 bit
● f GLfloat (float) 32 bit
● d GLdouble (double) 64 bit

OpenGL Naming Example
● Vertex

– glVertex3i(0 , 0 , 1)
– glVertex2d(27.34 , 88.12)
– glVertex3dv(array)

● Few functions return a value
● Most functions created by name mangling
● Constants are GL_SOMETHING
● Variable types are GLsomething

GLUT and GLU Naming
● Functions

– glutSomething
– gluSomething

● Constants
– GLUT_SOMETHING
– GLU_SOMETHING

● You can always tell by the name which API supplies a
function or constant

● Avoid things starting with glx, wgl & agl

GLUT: GL Utility Toolkit
● Supplies interface to OS

– Windowing
– Interaction

● Hello World in GLUT (well sorta)
int main(int argc,char* argv[])
{
 glutInit(&argc,argv);
 glutCreateWindow(“Hello World”);
 glutDisplayFunc(display);
 glutMainLoop();
}

Completing Hello World
● Draw a triangle

#include <GL/glut.h>
void display()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_POLYGON);
 glVertex2f(0.0,0.5);
 glVertex2f(0.5,-0.5);
 glVertex2f(-0.5,-0.5);
 glEnd();
 glFlush();
}

Compile, link and run
● gcc -Wall -o ex1 ex1.c -lglut -lGL
● Heavily relies on defaults

– Window
– Viewport
– Projection
– Color

`

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

