Drawing in 2D

CSCI 4229/5229
Computer Graphics
Fall 2025

Coordinate Systems

- Cartesian coordinates
 - Most commonly used
 - Left or right handed
 - 2D is a trivial case in 3D
- Polar coordinates
 - Convenient in some instances
- Curvilinear Coordinates
 - Specialized applications

2D Cartesian Coordinate Systems

- World Coordinates
 - Xmin Xmax x Ymin Ymax
- Normalized Device Coordinates
 - -0.1×0.1 or $0.1 \times 0.r$ or -1 to +1
 - may be isometric
 - Viewport Umin Umax x Vmin Vmax
- Device coordinates
 - pixels, plotter increments
 - origin may be top-left

Transformations

World to Normalized Device Coordinates
 u = (x-Xmin)/(Xmax-Xmin)*(Umax-Umin) + Umin
 v = (y-Ymin)/(Ymax-Ymin)*(Vmax-Vmin) + Vmin

- Normalized Device to World Coordinates
 x = (u-Umin)/(Umax-Umin)*(Xmax-Xmin) + Xmin
 y = (v-Vmin)/(Vmax-Vmin)*(Ymax-Ymin) + Ymin
- (x,y) may be outside (Xmin-Xmax,Ymin-Ymax)

Vector Lines

- Line from (x_0, y_0) to (x_1, y_1)
- Explicit

$$- y = (x-x_0)*(y_1-y_0)/(x_1-x_0) + y_0$$

$$- x = (y-y_0)*(x_1-x_0)/(y_1-y_0) + x_0$$

Parameteric

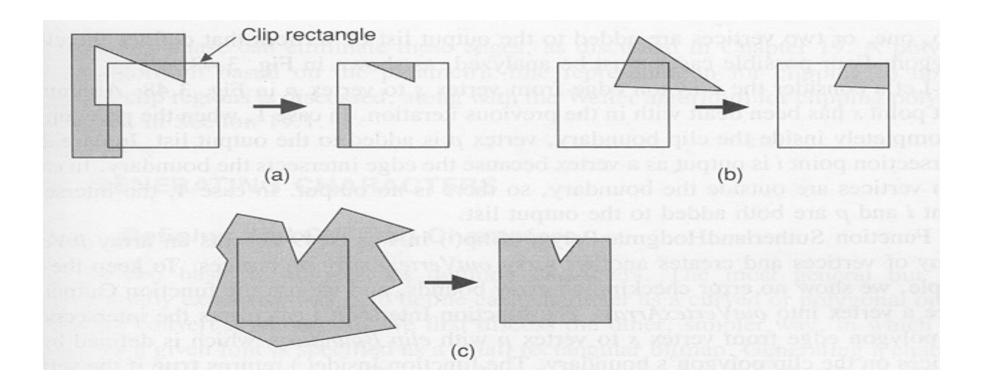
$$- x = (1-f)x_0 + f x_1$$

$$- y = (1-f)y_0 + fy_1$$

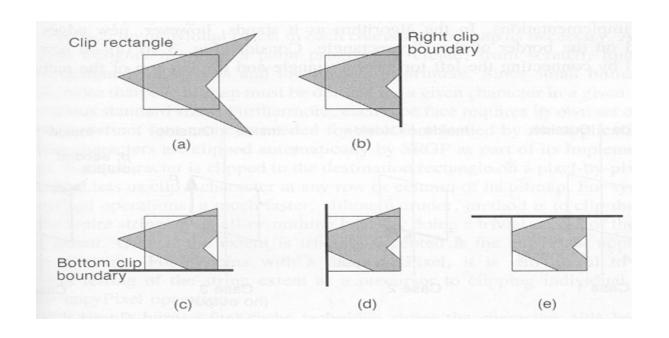
$$f = 0 \Rightarrow (x_0, y_0); \qquad f = 1 \Rightarrow (x_1, y_1)$$

Vector Clipping

- Cohen-Sutherland Line Clipping
 - Determine region of start and end
 - Accept, reject or clip
- Parametric Line-Clipping Algorithm
 - Calculate parameter t
 - -0 < t < 1 requires clipping
- Sutherland-Hodgman Polygon Clipping
 - Clips edges of polygon
 - Successive clips to half planes
- OpenGL does this for you


Cohen-Sutherland Line Clipping

- Set bits to identify outside zones
- Trivial accept or reject
- Clip non-trivial cases
- Accept or reject


Parametric Line Clipping

- Cohen-Sutherland may require up to 4 clips
- Parameteric algorithm more efficient
 - Original Cyrus-Beck
 - Improved by Liang-Barsky
- Readily extends to 3D and irregular windows
- Basic equation for line from P_0 to P_1 $t = (N \cdot [P_0 - P_E]) / (N \cdot [P_0 - P_1])$
 - N is the outside normal
 - P_E is on the edge

Polygon Clipping Challenges

Polygon Clipping Algorithm

