Shaders

CSCl1 4229/5229
Computer Graphics
Fall 2025

What is a Shader?

A shader is a computer program that runs on the
GPU to calculate the properties of vertexes, pixels
and other graphical processing

« Examples:

- Vertex position or color computed by a program
- Texture generated by a program

- Per-pixel lighting

- Image processing

- Cartoon shading

How does a shader work?

Shader Language used to specify operations

- RenderMan, ISL, HLSL, Cg, GLSL

Compile instructions into program

- e.g. glCompileShader()

Shader performs calculations as part of graphics
pipeline

Runs calculations on GPU instead of CPU

What is a Shader Language?

* Typically C/C++ like
- for, while, If, ... for control flow

- Adds special types like vec4 (4 component vector) and mat4
(4x4 matrix) and operators

- Predefined variables used to get data (gl Vertex) and return
result (gl_Position)

 Simplifies and extends C/C++ for efficiency

- Matrix & vector operations supported in hardware Graphics
Processing Unit (GPU)

- Built-in functions like normal, blend, etc.

GL Shader Language (GLSL)

e Often call “GLSLang”

 Added to OpenGL 2.0
- First appeared as extension in OpenGL 1.4
- Can be accessed in older versions using extentions
- GL Extension Wrangler (GLEW) often used
 Geared to real time graphics

- Inserted into OpenGL pipeline
- Vertex Shader to manipulate vertexes
- Fragment Shader to manipulate pixels

GLSL Resources

* OpenGL Programming Guide (929)

- Merges the old Red and Orange books
- Don't get older editions

e GLSL Quick Reference
- “Cheat sheet”
« Many online references

- http://www.lighthouse3d.com/opengl/glsl/
- Watch out for old stuff (OpenGL < 2)
- Don't be confused by newest stuff (OpenGL 4)

http://www.lighthouse3d.com/opengl/glsl/

OpenGL Deprecation

* | will mostly use OpenGL 2.x
- Feature rich
- Flat learning curve
- Advanced examples will use GL4 and Vulkan
 OpenGL Core Profile concentrates on rendering
- Improved execution time performance
* User must provide deprecated functionality
- Steepens the learning curve

- Deprecated features in Compatibility Profile
- Increases reliance on third party libraries

Where does GLSL fit?

 Vertex shader

- Transformations, color, texture coordinates, ...

 Fragment shader
- Textures, Color Interpolation, Fog, ...
 OpenGL still does Z-buffering, etc.

Transformed E

Vertices Primitive

Wertex Connectivity

Vertices

Vertex
Transformation

Rasterization

Pixel Fragmentis

Positions

Fragment
S s Texturing and

Colored COIO““Q
Fra gme nts

e — Raster
Pixel Updates Operations

Fixed Pipeline Example

Vertices Transf Verlices
O O
L Geom. Ops. @
0 —
o O] Q
®
Colored Fragments Fragmenis
Interpolation
w0 | E
®]

LINE(@ o) TRIANGLE(@ & ©

connectivity
nformation

Assembly V

ﬁh&fﬂo

7

Rasier

How Is this different from what
we have done before?

 GLSL instructions can run on GPU
- Matrix-vector multiplications done fast

« Without GLSL we influence the pipeline using parameters
and fixed operations

- Lighting calculated at vertexes
- Textures calculated at fragments

- Vertex-frament interpolation
« GL SMOOTH bilinear interpolation
 GL FLAT constant using last vertex

 With GLSL we can calculate values directly

How does this work with OpenGL?

Vertex Shader
glCreateshader

Program ﬂ
glCreateProgram glShaderSource | =

! L

glAttachShader |- glCompileShader
£ oo

!

QIAttaCI_fhader glCreatesShader
glekFﬂﬂgrarﬂ glShaderSource [=

gluseProgram glCompileShader

Fragment Shader

Other Shader Languages

RenderMan

- Lucasfilm - Pixar - Disney

OpenGL Shader (ISL)

- SGI Interactive Shader Language
High-Level Shader Language (HLSL)
- Microsoft DirectX 9

NVIDIA's Cg

- proprietary shading language

RenderMan

First practical shading language (1988)
De-facto entertainment industry standard
Remains in widespread use today

Generally used for off-line rendering
- Uncompromising image quality
- Little hardware acceleration

Credits:

- Jurassic Park, Star Wars Prequels, Lord of the Rings
- Toy Story, Finding Nemo, Monsters Inc, ...

No relation to OpenGL in syntax or structure

The Rest (ISL, HLSL, Cq, ...)

« Syntax different but similar approach

* Generally similar in structure

- Vertex Shader
- Fragment Shader

 Geared towards real time graphics

- Hardware support
- Performance stressed

GLSL Versions

GLSL 1.0 = OpenGL 1.4 (2002)
- The first portable shader

GLSL 1.2 = OpenGL 2.0 (2004)
- The shader we will use

GLSL 1.3 = OpenGL 3.0 (2008)
- Some changes in syntax
- Deprecates some features

GLSL 3.3 = OpenGL 3.3
- From here on GLSL version match OpenGL

Set minimum version using #version

GLSL 1.2 Variable Qualifiers

uniform (e.g. gl ModelViewMatrix)

- input to vertex and fragment shader from OpenGL or
application [read-only]

attribute (e.g. gl Vertex)

- input per-vertex to vertex shader from OpenGL or
application [read-only]

varying (e.g. gl FrontColor)

- output from vertex shader [read-write], interpolated, then
Input to fragment shader [read-only]

const (e.g. gl MaxLights)
- compile-time constant [read-only]

What is new in OpenGL 3&4

Additional shaders

- Geometry (OpenGL 3.2)

- Tesselation (OpenGL 4.0)

- Compute (OpenGL 4.3)

New syntax for passing variables

- “Iin” from previous stage

- “out” to next stage

- Deprecating most predefined variables

Building objects from vertex arrays
Deprecating OpenGL transformations

Vulkan

Vulkan is what would have been GL5

Breaks backwards compatibility, but strongly resembles
OpenGL

Requires you to be very explicit

Close to the metal, little abstractions
Super verbose, very steep learning curve
Requires tons of scaffolding

GLSL 4 Variable Qualifiers

const
- compile-time constant
uniform
- data from CPU to shader
N
- per-vertex input to vertex shader
- input from previous shader for others
out
- resulting vertex and fragment properties
- output to next shader

The problem with shaders

EXTREMELY hard to debug

- No “print” statements
You have to have to do lighting yourself

Support is spotty

- GLSL requires OpenGL 2.0 or extensions
- Still somewhat a work in progress

- Generally needs decent hardware

So why use it?

- Ultimate flexibility

- Unsupported features (e.g. bump maps)

OpenGL Extension Wrangler (GLEW)

« Maps OpenGL extensions at run time
- Provides headers for latest OpenGL
- Finds vendor support at run time

 Check support for specific functions or OpenGL version
at run time

- Crashes if unsupported features are used
 Use only if you have to (Windows mostly)

- Set -dUSEGLEW to selectively invoke it
- Do NOT require GLEW (I don't need it)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

