

Parametric
Curves

CSCI 4229/5229
Computer Graphics

Fall 2025

Parametric Curves
● x(t) = px(t), y(t) = py(t), z(t) = pz(t), w(t) = pw(t)
● Often p(t) is a polynomial
● Generally t in [0,1]
● Avoids problems such as lines parallel to axes
● Works for any number of dimensions
● Can be used to generate vertexes, colors, texture

coordinates, normals, etc.

Bernstein Polynomials
● Bernstein Polynomials

– Bin(t) = (in)ti(1-t)n-i

● Sums to one ∑i=0
n Bin(t)=1

● Cubic Bernstein Polynomials
– B03(t) = (1-t)3

– B13(t) = 3t(1-t)2

– B23(t) = 3t2(1-t)
– B3

3(t) = t3

Cubic Bernstein Polynomials

Bézier Curves

● Cn(t) = ∑i=0
n Bi

n(t) Pi , t ∈ [0,1]
● Pi are points in 2D, 3D or 4D
● Convex linear combination of points Pi

– Entire curve is in convex hull of points (∑i=0
n Bin(t)=1)

– B0n(0) = 1, so starts at P0

– Bnn(1) = 1, so ends at Pn

– Tangential to P0-P1 and Pn-Pn-1

● Curve is smooth and differentiable

Curves in OpenGL
● One-dimensional Evaluators
● Can be used to generate vertexes, normals, colors and

textures
● Curve defined analytically using Bezier curves
● Evaluated at discrete points and rendered using

straight line segments

Curves in OpenGL
● glEnable()

– Enables types of data to generate
● glMap1d()

– Defines control points and domain
● glEvalCoord1d()

– Generates a data point
● glMapGrid1d() & glEvalMesh1()

– Generates a series of data points
● Deprecated in OpenGL (do this manually)

glMap1d(type,Umin,Umax,stride,order,points)
● type of data to generate

– GL_MAP1_VERTEX_[34]
– GL_MAP1_NORMAL
– GL_MAP1_COLOR_4
– GL_MAP1_TEXTURE_COORD_[1-4]

● Umin&Umax are limits of parameter(often0&1)
● stride is the number of coordinates in data (3 or 4)
● order is the order of the curve (4=cubic)
● points is the array of data points
● Remember to also call glEnable()

glEvalCoord1d(u)
● Generate one vertex for each glMap1d() type currently

active (e.g. texture, normal, vertex)
● To generate the whole curve, call glEvalCoord1d() once

for each vertex
● Exercise entire parameter space

– u from Umin to Umax (0 to 1)

Generating a complete curve
● glMapGrid1d(N , U1 , U2)
● glEvalMesh1(mode , N1 , N2)
● This is equivalent to

glBegin(mode);
for (i=N1;i<=N2;i++)
 glEvalCoord1(U1 + i*(U2-U1)/N);
glEnd();

Interpolation with Bézier Curves
● We have 4 points we want the curve to pass through P0,

P1, P2 & P3

● What should control points R0, R1, R2 & R3 be?

Relationship between P and R

Bézier Interpolation Matrix
● Selected so t=1/3 and t=2/3 maps to P1 & P2

● Local function (depends only on P0,P1,P2,P3)

Extending to More Points
● Two curves P0,P1,P2,P3 and P4,P5,P6,P7

● Bézier curves pass through P0&P3 and P4&P7, so the
curve will be continuous of P3=P4

● Bézier curves are tangential to P1-P0 & P2-P3 and P5-P4 &
P6-P7, so the curve will be smooth if P3=P4 and P2-P3 and
P5-P4, therefor P5 = 2P3-P2

Splines
● Traditionally a long, thin, flexible piece of wood or metal

used to describe a smooth curve
– Used in building boats, airplanes, etc.

● Held down by ducks or whales
● Mathematical equivalents:

– Natural Cubic Spline
– Weights called knots
– Piecewise polynomial

Parametric Splines
● Three or four splines, one for each component
● Parameter t reach integer values at each knot

– Cardinal spline
● Natural Cubic Spline
● Clamped Cubic Spline
● Quadratic Spline
● Hermite Spline

Cardinal Cubic Spline

Cardinal Cubic Spline

● Requires solution of tri-diagonal matrix
● Global (all knots impact everywhere)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

