Normals for the Twisted Cylindroid
CSCI 4229/5229

Consider a cylindroid where the top and bottom are both ellipses. The height of the
cylinder is h along the y axis, and the major and minor axes have parameters a and b for
the bottom surface and ¢ and d for the top surface along the x and y axes, respectively.
These surfaces are best described in terms of a polar coordinate 6 that goes from 0 to 27.

The rim of the bottom surface is given by
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The tangetial vectors along the rim of the top and bottom surfaces can be calculated by
taking the derivative with respect to #, so for the bottom surface
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The vector between the corresponding points on the top and bottom surfaces are
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The normal vector at the rim of the bottom surface can then be calcuated as the cross
product
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and for the top surface
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For a oval cylindroid with a = ¢ and b = d the equation simplfies to
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For a cylinder with a = b = ¢ = d the equation simplfies to
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For a truncated cone with a = b and ¢ = d the equation simplifies to
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For a cone with a = b and ¢ = d = 0 the equation simplifies to
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