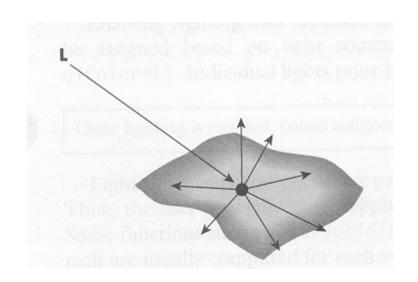
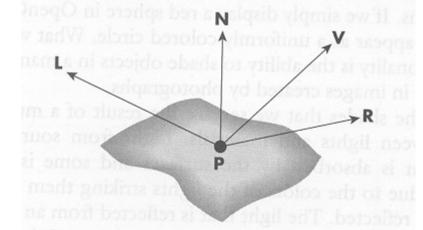
Shader Lighting and Text res **CSCI 4830/7000 Advanced Computer Graphics** Spring 2009

Shader Lighting


- Ultimate flexibility
 - Lighting method
 - Phong reflection
 - Blinn-Phong reflection
 - Lighting
 - Per vertex with Gouraud shading
 - Per pixel lighting
 - Special effects
 - High Dynamic Range lighting
- Ultimate responsibility
 - Nothing happens automatically

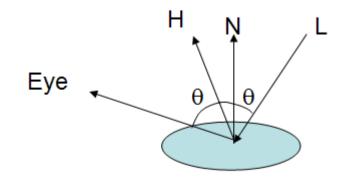
OpenGL Lighting Components

- $C = M_E + M_A (C_A + C_G) + (N L) M_D C_D + (N H)^S M_S C_S$
- C_x are light components
- M_x are material components
- Components
 - Emission
 - Ambient (also Global Ambient)
 - Diffuse
 - Specular
- Calculated for each light, vertex, RGBA
- Assumes values in the range 0-1


Diffuse Reflections

- Diffuse light scatters in all directions
 - Lambertian reflection
- Intensity depends on cosine of the angle of incidence
- Intensity (NŁ)MC

Phong Reflection Model


- *L* light source
- N normal vector for surface
- R reflected light
 - $-R = 2(L \cdot N)N L$
- V viewer (eye)
- Intensity (*V*•*R*)^s*MC*
 - S shininess

- M material reflection coefficient
- C color if light source
- Calculated independently for R,G,B

Blinn-Phong Reflection Model

- Also called modified Phong or Fast Phong
- Simpler and faster
- Half angle H = L + V (renormalize)
- Intensity (NH)^SMC

Per Vertex Lighting

- Calculate lighting at vertex
- Linearly interpolate across polygon
 - This is often called Gouraud shading
 - Real Gouraud shading averages normals at vertexes and then interpolates
- Effort proportional to number of vertexes
- May miss important effects for large polygons

Per pixel lighting

- Calculate lighting at pixel
- Calculate ambient and emission by vertex
 - Set L,P,V,H for use in frag shader
- Calculate diffuse and specular by pixel
- Effort proportional to number of pixels

Shader Textures

- Pointer to texture
 - sampler2D *name*;
 - Points to current texture from glBindTexture()
- Extract pixel at vec2 texture coordinate pos
 - texture2D(name,pos);
- Different sampler/function for 1D,2D,LOD,...
- Returns vec4 (RGBA)