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Objective

* To provide you with a framework based on the
techniques and best practices used by
experienced parallel programmers for
- Thinking about the problem of parallel

programming
— Discussing your work with others

- Addressing performance and functionality issues in
your parallel program

- Using or building useful tools and environments
- understanding case studies and projects



Fundamentals of Parallel
Computing

* Parallel computing requires that

— The problem can be decomposed into sub-
problems that can be safely solved at the same
time

- The programmer structures the code and data to
solve these sub-problems concurrently

* The goals of parallel computing are

— To solve problems in less time, and/or

- To solve bigger problems, and/or

- To achieve better solutions

The problems must be large enough to justify parallel
computing and to exhibit exploitable concurrency.



A Recommended Reading

Mattson, Sanders, Massingill, Patterns for
Parallel Programming, Addison Wesley, 2005,
ISBN 0-321-22811-1.

— We draw quite a bit from the book

— A good overview of challenges, best practices, and
common techniques in all aspects of parallel
programming



Key Parallel Programming Steps

* To find the concurrency in the problem

* To structure the algorithm so that concurrency
can be exploited

* To implement the algorithm in a suitable
programming environment

* To execute and tune the performance of the
code on a parallel system

Unfortunately, these have not been separated into levels ot
abstractions that can be dealt with independently.



Challenges of Parallel Programming

* Finding and exploiting concurrency often requires looking at
the problem from a non-obvious angle
- Computational thinking (J. Wing)

* Dependences need to be identified and managed

- The order of task execution may change the answers
* Obvious: One step feeds result to the next steps

 Subtle: numeric accuracy may be affected by ordering steps that are
logically parallel with each other

* Performance can be drastically reduced by many factors
- Overhead of parallel processing
- Load imbalance among processor elements
- Inefficient data sharing patterns
- Saturation of critical resources such as memory bandwidth



Shared Memory vs. Message
Passing

* We will focus on shared memory parallel
programming
— This is what CUDA is based on

— Future massively parallel microprocessors are
expected to support shared memory at the chip
level

* The programming considerations of message
passing model is quite different!

- Look at MPI (Message Passing Interface) and its
relatives such as Charm++



Finding Concurrency in Problems

* |dentify a decomposition of the problem into sub-
problems that can be solved simultaneously

- A task decomposition that identifies tasks for potential
concurrent execution

- A data decomposition that identifies data local to each
task

- A way of grouping tasks and ordering the groups to
satisfy temporal constraints

— An analysis on the data sharing patterns among the
concurrent tasks

- A design evaluation that assesses of the quality the
choices made in all the steps i



Finding Concurrency —-The Process

6ependence Analysis\\
Decomposition Group Tasks
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This is typically a iterative process.
Opportunities exist for dependence analysis to play
earlier role in decomposition.




Task Decomposition

* Many large problems can be naturally
decomposed into tasks —CUDA kernels are
largely tasks

- The number of tasks used should be adjustable to
the execution resources available.

- Each task must include sufficient work in order to
compensate for the overhead of managing their
parallel execution.

- Tasks should maximize reuse of sequential
program code to minimize effort.

“In an ideal world, the compiler would find tasks for the
programmer. Unfortunately, this almost never happens.”
- Mattson, Sanders, Massingill



Task Decomposition Example -

Square Matrix Multiplication
« P=M*N of WIDTH x WIDTH

— One natural (sub-
problem) produces one
element of P

— All tasks can execute in
parallel in this example.




Task Decomposition Example —

Molecular Dynamics
» Simulation of motions of a large molecular system

* For each atom, there are natural tasks to calculate
- Vibrational forces
- Rotational forces

- Neighbors that must be considered in non-bonded
forces

- Non-bonded forces
- Update position and velocity
— Misc physical properties based on motions

* Some of these can go in parallel for an atom

It is common that there are multiple ways to decompose
any given problem.
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Data Decomposition

* The most compute intensive parts of many large
problem manipulate a large data structure

- Similar operations are being applied to different parts
of the data structure, in a mostly independent manner.

- This is what CUDA is optimized for.

* The data decomposition should lead to
- Efficient data usage by tasks within the partition

- Few dependencies across the tasks that work on
different partitions

- Adjustable partitions that can be varied according to
the hardware characteristics
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Data Decomposition Example -

Square Matrix Multiplication
* Row blocks

— Computing each partition
requires access to entire N
array

* Square sub-blocks

— Only bands of M and N are ]{
needed




Tasks Grouping

* Sometimes natural tasks of a problem can be
grouped together to improve efficiency

- Reduced synchronization overhead -all tasks in the
group can use a barrier to wait for a common
dependence

— All tasks in the group efficiently share data loaded into
a common on-chip, shared storage (Shard Memory)

- Grouping and merging dependent tasks into one task
reduces need for synchronization

— CUDA thread blocks are task grouping examples.
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Task Grouping Example -
Square Matrix Multiplication

* Tasks calculating a P sub-
block

— Extensive input data sharing,
reduced memory bandwidth
using Shared Memory

— All synched in execution




Task Ordering

* |dentify the data and resource required by a
group of tasks before they can execute them
- Find the task group that creates it

- Determine a temporal order that satisfy all data
constraints
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Task Ordering Example:

Molecular Dynamics

Neighbor List

Vibrational and
Rotational Forces
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Update atomic positions and velocities
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Next Time Step
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Data Sharing

* Data sharing can be a double-edged sword

- Excessive data sharing can drastically reduce advantage of parallel
execution

- Localized sharing can improve memory bandwidth efficiency

 Efficient memory bandwidth usage can be achieved by
synchronizing the execution of task groups and coordinating
their usage of memory data
- Efficient use of on-chip, shared storage

* Read-only sharing can usually be done at much higher

efficiency than read-write sharing, which often requires
synchronization

20



Data Sharing Example -
Matrix Multiplication

* Each task group will finish usage of each sub-
block of N and M before moving on

- N and M sub-blocks loaded into Shared Memory
for use by all threads of a P sub-block

— Amount of on-chip Shared Memory strictly limits
the number of threads working on a P sub-block

* Read-only shared data can be more efficiently
accessed as Constant or Texture data
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Data Sharing Example -
Molecular Dynamics

* The atomic coordinates

- Read-only access by the neighbor list, bonded force, and
non-bonded force task groups

- Read-write access for the position update task group
* The force array

- Read-only access by position update group
- Accumulate access by bonded and non-bonded task
groups
* The neighbor list
- Read-only access by non-bonded force task groups
- Generated by the neighbor list task group 2



Key Parallel Programming Steps

* To find the concurrency in the problem

* To structure the algorithm to translate
concurrency into performance

* To implement the algorithm in a suitable
programming environment

* To execute and tune the performance of the
code on a parallel system

Unfortunately, these have not been separated into levels ot
abstractions that can be dealt with independently.
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Algorithm

* A step by step procedure that is guaranteed to terminate, such
that each step is precisely stated and can be carried out by a
computer

- Definiteness —the notion that each step is precisely stated

- Effective computability —each step can be carried out by a computer
— Finiteness —-the procedure terminates

* Multiple algorithms can be used to solve the same problem
- Some require fewer steps
- Some exhibit more parallelism
- Some have larger memory footprint than others
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Choosing Algorithm Structure
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Mapping a Divide and Conquer Algorithm
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Tiled (Stenciled) Algorithms are
Important for Geometric Decomposition

« A framework for memory
data sharing and reuse by '
increasing data access
locality.

— Tiled access patterns allow
small cache/scartchpad
memories to hold on to data
for re-use.

— For matrix multiplication, a
16X16 thread block perform
2%256 = 512 float loads from
device memory for 256 *
(2*16) = 8,192 mul/add
operations.

A convenient framework for +——«—— P—
organizing threads (tasks)




Increased Work per Thread for

even more locality

Each computes two element of Pd, ,
Reduced loads from global memory (Md) to
shared memory

Reduced instruction overhead
—  More work done in each iteration

|
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Double Buffering
- a frequently used algorithm pattern

* One could double buffer the computation, getting better
instruction mix within each thread
- This is classic software pipelining in ILP compilers

Load next tile from global memory
Loop {

Loop {

Load current tile to shared memory Deposit current tile to shared memory

Syncthre ads() syncthreads()

Load next tile from global memory

Compute current tile
Compute current tile

syncthreads()
! )

syncthreads()
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Double Buffering

Deposit blue tile from register
into shared memory

Syncthreads

Load orange tile into register
Compute Blue tile

Deposit orange tile into shared

memory
I J
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(a) Direct summation

At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed,;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct

summation to process a bin

Figure 10.2 Cutoff Summation algorithm
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Cut-Off Summation Restores Data
Scalability
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Scalability and Performance of different algorithms for
calculating electrostatic potential map.
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