Parallel Thinking

CSCl1 4830/7000
Advanced Computer Graphics
Spring 2010

Objective

* To provide you with a framework based on the
techniques and best practices used by
experienced parallel programmers for
- Thinking about the problem of parallel

programming
— Discussing your work with others

- Addressing performance and functionality issues in
your parallel program

- Using or building useful tools and environments
- understanding case studies and projects

Fundamentals of Parallel
Computing

* Parallel computing requires that

— The problem can be decomposed into sub-
problems that can be safely solved at the same
time

- The programmer structures the code and data to
solve these sub-problems concurrently

* The goals of parallel computing are

— To solve problems in less time, and/or

- To solve bigger problems, and/or

- To achieve better solutions

The problems must be large enough to justify parallel
computing and to exhibit exploitable concurrency.

A Recommended Reading

Mattson, Sanders, Massingill, Patterns for
Parallel Programming, Addison Wesley, 2005,
ISBN 0-321-22811-1.

— We draw quite a bit from the book

— A good overview of challenges, best practices, and
common techniques in all aspects of parallel
programming

Key Parallel Programming Steps

* To find the concurrency in the problem

* To structure the algorithm so that concurrency
can be exploited

* To implement the algorithm in a suitable
programming environment

* To execute and tune the performance of the
code on a parallel system

Unfortunately, these have not been separated into levels ot
abstractions that can be dealt with independently.

Challenges of Parallel Programming

* Finding and exploiting concurrency often requires looking at
the problem from a non-obvious angle
- Computational thinking (J. Wing)

* Dependences need to be identified and managed

- The order of task execution may change the answers
* Obvious: One step feeds result to the next steps

 Subtle: numeric accuracy may be affected by ordering steps that are
logically parallel with each other

* Performance can be drastically reduced by many factors
- Overhead of parallel processing
- Load imbalance among processor elements
- Inefficient data sharing patterns
- Saturation of critical resources such as memory bandwidth

Shared Memory vs. Message
Passing

* We will focus on shared memory parallel
programming
— This is what CUDA is based on

— Future massively parallel microprocessors are
expected to support shared memory at the chip
level

* The programming considerations of message
passing model is quite different!

- Look at MPI (Message Passing Interface) and its
relatives such as Charm++

Finding Concurrency in Problems

* |dentify a decomposition of the problem into sub-
problems that can be solved simultaneously

- A task decomposition that identifies tasks for potential
concurrent execution

- A data decomposition that identifies data local to each
task

- A way of grouping tasks and ordering the groups to
satisfy temporal constraints

— An analysis on the data sharing patterns among the
concurrent tasks

- A design evaluation that assesses of the quality the
choices made in all the steps i

Finding Concurrency —-The Process

6ependence Analysis\\
Decomposition Group Tasks
. ™
Task Decomposition Y
ﬁ Order Tasks ﬁ Design Evaluation
A \ /
Data Decomposition
\ / Data Sharing

N J

This is typically a iterative process.
Opportunities exist for dependence analysis to play
earlier role in decomposition.

Task Decomposition

* Many large problems can be naturally
decomposed into tasks —CUDA kernels are
largely tasks

- The number of tasks used should be adjustable to
the execution resources available.

- Each task must include sufficient work in order to
compensate for the overhead of managing their
parallel execution.

- Tasks should maximize reuse of sequential
program code to minimize effort.

“In an ideal world, the compiler would find tasks for the
programmer. Unfortunately, this almost never happens.”
- Mattson, Sanders, Massingill

Task Decomposition Example -

Square Matrix Multiplication
« P=M*N of WIDTH x WIDTH

— One natural (sub-
problem) produces one
element of P

— All tasks can execute in
parallel in this example.

Task Decomposition Example —

Molecular Dynamics
» Simulation of motions of a large molecular system

* For each atom, there are natural tasks to calculate
- Vibrational forces
- Rotational forces

- Neighbors that must be considered in non-bonded
forces

- Non-bonded forces
- Update position and velocity
— Misc physical properties based on motions

* Some of these can go in parallel for an atom

It is common that there are multiple ways to decompose
any given problem.

NAMD

PatchlList
Data

SPEC_NAMD

/

Structure
Py 4 A

I144 iteratio:ns
(per patch)

6 Different NAMD
Configurations
(all independent)

Independent
Iterations

Force & Energy
Calculation
Inner Loops

13

Data Decomposition

* The most compute intensive parts of many large
problem manipulate a large data structure

- Similar operations are being applied to different parts
of the data structure, in a mostly independent manner.

- This is what CUDA is optimized for.

* The data decomposition should lead to
- Efficient data usage by tasks within the partition

- Few dependencies across the tasks that work on
different partitions

- Adjustable partitions that can be varied according to
the hardware characteristics

14

Data Decomposition Example -

Square Matrix Multiplication
* Row blocks

— Computing each partition
requires access to entire N
array

* Square sub-blocks

— Only bands of M and N are]{
needed

Tasks Grouping

* Sometimes natural tasks of a problem can be
grouped together to improve efficiency

- Reduced synchronization overhead -all tasks in the
group can use a barrier to wait for a common
dependence

— All tasks in the group efficiently share data loaded into
a common on-chip, shared storage (Shard Memory)

- Grouping and merging dependent tasks into one task
reduces need for synchronization

— CUDA thread blocks are task grouping examples.

16

Task Grouping Example -
Square Matrix Multiplication

* Tasks calculating a P sub-
block

— Extensive input data sharing,
reduced memory bandwidth
using Shared Memory

— All synched in execution

Task Ordering

* |dentify the data and resource required by a
group of tasks before they can execute them
- Find the task group that creates it

- Determine a temporal order that satisfy all data
constraints

18

Task Ordering Example:

Molecular Dynamics

Neighbor List

Vibrational and
Rotational Forces

A 4

A

y

Non-bonded Force

4

Update atomic positions and velocities

A 4

Next Time Step

19

Data Sharing

* Data sharing can be a double-edged sword

- Excessive data sharing can drastically reduce advantage of parallel
execution

- Localized sharing can improve memory bandwidth efficiency

 Efficient memory bandwidth usage can be achieved by
synchronizing the execution of task groups and coordinating
their usage of memory data
- Efficient use of on-chip, shared storage

* Read-only sharing can usually be done at much higher

efficiency than read-write sharing, which often requires
synchronization

20

Data Sharing Example -
Matrix Multiplication

* Each task group will finish usage of each sub-
block of N and M before moving on

- N and M sub-blocks loaded into Shared Memory
for use by all threads of a P sub-block

— Amount of on-chip Shared Memory strictly limits
the number of threads working on a P sub-block

* Read-only shared data can be more efficiently
accessed as Constant or Texture data

21

Data Sharing Example -
Molecular Dynamics

* The atomic coordinates

- Read-only access by the neighbor list, bonded force, and
non-bonded force task groups

- Read-write access for the position update task group
* The force array

- Read-only access by position update group
- Accumulate access by bonded and non-bonded task
groups
* The neighbor list
- Read-only access by non-bonded force task groups
- Generated by the neighbor list task group 2

Key Parallel Programming Steps

* To find the concurrency in the problem

* To structure the algorithm to translate
concurrency into performance

* To implement the algorithm in a suitable
programming environment

* To execute and tune the performance of the
code on a parallel system

Unfortunately, these have not been separated into levels ot
abstractions that can be dealt with independently.

23

Algorithm

* A step by step procedure that is guaranteed to terminate, such
that each step is precisely stated and can be carried out by a
computer

- Definiteness —the notion that each step is precisely stated

- Effective computability —each step can be carried out by a computer
— Finiteness —-the procedure terminates

* Multiple algorithms can be used to solve the same problem
- Some require fewer steps
- Some exhibit more parallelism
- Some have larger memory footprint than others

24

Choosing Algorithm Structure

=

Organize
by Task

Linear

4

/

N—

Task
Parallelism

\

_

Recursive

4

/

N—

Divide and
Conquer

~

_

‘ Start |
\
LOrgamze byJ LOrgamze by
Data Data Flow
Linear Recursive Regular Irregular
:Defggég;i;o; : Regj;ftjve : pipe'nne }:Vem Dvr;

25

Mapping a Divide and Conquer Algorithm

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

_
ane
s
IS
. .

/

Array elements—*

Tiled (Stenciled) Algorithms are
Important for Geometric Decomposition

« A framework for memory
data sharing and reuse by '
increasing data access
locality.

— Tiled access patterns allow
small cache/scartchpad
memories to hold on to data
for re-use.

— For matrix multiplication, a
16X16 thread block perform
2%256 = 512 float loads from
device memory for 256 *
(2*16) = 8,192 mul/add
operations.

A convenient framework for +——«—— P—
organizing threads (tasks)

Increased Work per Thread for

even more locality

Each computes two element of Pd, ,
Reduced loads from global memory (Md) to
shared memory

Reduced instruction overhead
— More work done in each iteration

|
e

Double Buffering
- a frequently used algorithm pattern

* One could double buffer the computation, getting better
instruction mix within each thread
- This is classic software pipelining in ILP compilers

Load next tile from global memory
Loop {

Loop {

Load current tile to shared memory Deposit current tile to shared memory

Syncthre ads() syncthreads()

Load next tile from global memory

Compute current tile
Compute current tile

syncthreads()
!)

syncthreads()

29

Double Buffering

Deposit blue tile from register
into shared memory

Syncthreads

Load orange tile into register
Compute Blue tile

Deposit orange tile into shared

memory
I J

e e e

Ilﬁ

+
b+ + |+ +
|+ - + - +.I+

++6|

+

(a) Direct summation

At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed,;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct

summation to process a bin

Figure 10.2 Cutoff Summation algorithm

31

Cut-Off Summation Restores Data
Scalability

1000 . -
CPU-SSE3
LargeBin]
% MR SmallBin - i .
2 SmallBin-Overlap -« .f -]
% 10 | DirectSum . |
W — 2
Q e VLS]
E 1+ s - e TJ) '.:‘5-{"? 4
g , " X BB)
5 0.1 ¢ A e s
3 _ " % ecE Same scalability
n 0.01 - . BT among all cutoff
' % " Implementations
0.001 - ' ' ' '
1000 8000 64000 1e+06 8e+06

Volume of potential map [Angstroma)

Scalability and Performance of different algorithms for
calculating electrostatic potential map.

32

