

Parallel Thinking
CSCI 4830/7000

Advanced Computer Graphics
Spring 2010

 2

Objective

● To provide you with a framework based on the
techniques and best practices used by
experienced parallel programmers for
– Thinking about the problem of parallel

programming
– Discussing your work with others
– Addressing performance and functionality issues in

your parallel program
– Using or building useful tools and environments
– understanding case studies and projects

 3

Fundamentals of Parallel
Computing

● Parallel computing requires that
– The problem can be decomposed into sub-

problems that can be safely solved at the same
time

– The programmer structures the code and data to
solve these sub-problems concurrently

● The goals of parallel computing are
– To solve problems in less time, and/or
– To solve bigger problems, and/or
– To achieve better solutions

The problems must be large enough to justify parallel
computing and to exhibit exploitable concurrency.

 4

A Recommended Reading

Mattson, Sanders, Massingill, Patterns for
Parallel Programming, Addison Wesley, 2005,
ISBN 0-321-22811-1.

– We draw quite a bit from the book
– A good overview of challenges, best practices, and

common techniques in all aspects of parallel
programming

 5

Key Parallel Programming Steps

• To find the concurrency in the problem
• To structure the algorithm so that concurrency

can be exploited
• To implement the algorithm in a suitable

programming environment
• To execute and tune the performance of the

code on a parallel system

Unfortunately, these have not been separated into levels of
abstractions that can be dealt with independently.

 6

Challenges of Parallel Programming
● Finding and exploiting concurrency often requires looking at

the problem from a non-obvious angle
– Computational thinking (J. Wing)

● Dependences need to be identified and managed
– The order of task execution may change the answers

● Obvious: One step feeds result to the next steps
● Subtle: numeric accuracy may be affected by ordering steps that are

logically parallel with each other
● Performance can be drastically reduced by many factors

– Overhead of parallel processing
– Load imbalance among processor elements
– Inefficient data sharing patterns
– Saturation of critical resources such as memory bandwidth

 7

Shared Memory vs. Message
Passing

● We will focus on shared memory parallel
programming
– This is what CUDA is based on
– Future massively parallel microprocessors are

expected to support shared memory at the chip
level

● The programming considerations of message
passing model is quite different!
– Look at MPI (Message Passing Interface) and its

relatives such as Charm++

 8

Finding Concurrency in Problems
● Identify a decomposition of the problem into sub-

problems that can be solved simultaneously
– A task decomposition that identifies tasks for potential

concurrent execution
– A data decomposition that identifies data local to each

task
– A way of grouping tasks and ordering the groups to

satisfy temporal constraints
– An analysis on the data sharing patterns among the

concurrent tasks
– A design evaluation that assesses of the quality the

choices made in all the steps

 9

Finding Concurrency – The Process

Task Decomposition

Data Decomposition

Data Sharing

Order Tasks

Decomposition Group Tasks

Dependence Analysis

Design Evaluation

This is typically a iterative process.
Opportunities exist for dependence analysis to play

earlier role in decomposition.

 10

Task Decomposition
● Many large problems can be naturally

decomposed into tasks – CUDA kernels are
largely tasks
– The number of tasks used should be adjustable to

the execution resources available.
– Each task must include sufficient work in order to

compensate for the overhead of managing their
parallel execution.

– Tasks should maximize reuse of sequential
program code to minimize effort.

“In an ideal world, the compiler would find tasks for the
programmer. Unfortunately, this almost never happens.”
 ­ Mattson, Sanders, Massingill

 11

Task Decomposition Example -
Square Matrix Multiplication

• P = M * N of WIDTH x WIDTH
– One natural task (sub-

problem) produces one
element of P

– All tasks can execute in
parallel in this example.

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

 12

Task Decomposition Example –
Molecular Dynamics

● Simulation of motions of a large molecular system
● For each atom, there are natural tasks to calculate

– Vibrational forces
– Rotational forces
– Neighbors that must be considered in non-bonded

forces
– Non-bonded forces
– Update position and velocity
– Misc physical properties based on motions

● Some of these can go in parallel for an atom

It is common that there are multiple ways to decompose
any given problem.

 13

NAMD

SPEC_NAMD

6 Different NAMD
Configurations

(all independent)

SelfComputes Objects

PairComputes Objects

….... 144 iterations
(per patch)

Independent
Iterations

…
.

Force & Energy
Calculation
Inner Loops

1872 iterations
(per patch pair)

…..

PatchList
Data

Structure

 14

Data Decomposition
● The most compute intensive parts of many large

problem manipulate a large data structure
– Similar operations are being applied to different parts

of the data structure, in a mostly independent manner.
– This is what CUDA is optimized for.

● The data decomposition should lead to
– Efficient data usage by tasks within the partition
– Few dependencies across the tasks that work on

different partitions
– Adjustable partitions that can be varied according to

the hardware characteristics

 15

Data Decomposition Example -
Square Matrix Multiplication

• Row blocks
– Computing each partition

requires access to entire N
array

• Square sub-blocks
– Only bands of M and N are

needed M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

 16

Tasks Grouping
● Sometimes natural tasks of a problem can be

grouped together to improve efficiency
– Reduced synchronization overhead – all tasks in the

group can use a barrier to wait for a common
dependence

– All tasks in the group efficiently share data loaded into
a common on-chip, shared storage (Shard Memory)

– Grouping and merging dependent tasks into one task
reduces need for synchronization

– CUDA thread blocks are task grouping examples.

 17

P

Task Grouping Example -
Square Matrix Multiplication
• Tasks calculating a P sub-

block
– Extensive input data sharing,

reduced memory bandwidth
using Shared Memory

– All synched in execution
M

N

W
ID

TH
W

ID
TH

WIDTH WIDTH

 18

Task Ordering

● Identify the data and resource required by a
group of tasks before they can execute them
– Find the task group that creates it
– Determine a temporal order that satisfy all data

constraints

 19

Task Ordering Example:
Molecular Dynamics

Neighbor List

Vibrational and
Rotational Forces

Non­bonded Force

Next Time Step

Update atomic positions and velocities

 20

Data Sharing

● Data sharing can be a double-edged sword
– Excessive data sharing can drastically reduce advantage of parallel

execution
– Localized sharing can improve memory bandwidth efficiency

● Efficient memory bandwidth usage can be achieved by
synchronizing the execution of task groups and coordinating
their usage of memory data
– Efficient use of on-chip, shared storage

● Read-only sharing can usually be done at much higher
efficiency than read-write sharing, which often requires
synchronization

 21

Data Sharing Example –
Matrix Multiplication

● Each task group will finish usage of each sub-
block of N and M before moving on
– N and M sub-blocks loaded into Shared Memory

for use by all threads of a P sub-block
– Amount of on-chip Shared Memory strictly limits

the number of threads working on a P sub-block
● Read-only shared data can be more efficiently

accessed as Constant or Texture data

 22

Data Sharing Example –
Molecular Dynamics

● The atomic coordinates
– Read-only access by the neighbor list, bonded force, and

non-bonded force task groups
– Read-write access for the position update task group

● The force array
– Read-only access by position update group
– Accumulate access by bonded and non-bonded task

groups
● The neighbor list

– Read-only access by non-bonded force task groups
– Generated by the neighbor list task group

 23

Key Parallel Programming Steps

• To find the concurrency in the problem
• To structure the algorithm to translate

concurrency into performance
• To implement the algorithm in a suitable

programming environment
• To execute and tune the performance of the

code on a parallel system

Unfortunately, these have not been separated into levels of
abstractions that can be dealt with independently.

 24

Algorithm

● A step by step procedure that is guaranteed to terminate, such
that each step is precisely stated and can be carried out by a
computer
– Definiteness – the notion that each step is precisely stated
– Effective computability – each step can be carried out by a computer
– Finiteness – the procedure terminates

● Multiple algorithms can be used to solve the same problem
– Some require fewer steps
– Some exhibit more parallelism
– Some have larger memory footprint than others

 25

Choosing Algorithm Structure

Start

Organize
by Task

Organize by
Data

Organize by
Data Flow

Linear Recursive Linear Recursive

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive
Data

Regular Irregular

Pipeline Event Driven

 26

Mapping a Divide and Conquer Algorithm

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

 27

M

N

P

Psub

BLOCK_WIDTH

WIDTHWIDTH

BLOCK_WIDTHBLOCK_WIDTH

bx

tx
0 1 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
LO

C
K

_W
ID

TH
B

LO
C

K
_W

ID
TH

B
LO

C
K

_S
IZ

E

W
ID

T
H

W
ID

T
H

Tiled (Stenciled) Algorithms are
Important for Geometric Decomposition

• A framework for memory
data sharing and reuse by
increasing data access
locality.
– Tiled access patterns allow

small cache/scartchpad
memories to hold on to data
for re-use.

– For matrix multiplication, a
16X16 thread block perform
2*256 = 512 float loads from
device memory for 256 *
(2*16) = 8,192 mul/add
operations.

• A convenient framework for
organizing threads (tasks)

 28

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
0 1 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

TI
LE

_W
ID

T
H

TI
LE

_W
ID

TH
TI

LE
_W

ID
T

H
E

W
ID

TH
W

ID
TH

 Increased Work per Thread for
even more locality

• Each thread computes two element of Pdsub

• Reduced loads from global memory (Md) to
shared memory

• Reduced instruction overhead
– More work done in each iteration

Pdsub

 29

Double Buffering
- a frequently used algorithm pattern

● One could double buffer the computation, getting better
instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop {

 Load current tile to shared memory

 syncthreads()

 Compute current tile

 syncthreads()
}

Load next tile from global memory

Loop {
 Deposit current tile to shared memory

 syncthreads()

 Load next tile from global memory

 Compute current tile

 syncthreads()
}

 30

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
0 1 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

TI
LE

_W
ID

TH
TI

LE
_W

ID
T

H
TI

LE
_W

ID
TH

E

W
ID

T
H

W
ID

TH

Double Buffering
• Deposit blue tile from register

into shared memory
• Syncthreads
• Load orange tile into register
• Compute Blue tile
• Deposit orange tile into shared

memory
• … .

 31

(a) Direct summation
At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct
summation to process a bin

Figure 10.2 Cutoff Summation algorithm

 32

Same scalability
among all cutoff
implementations

Scalability and Performance of different algorithms for
calculating electrostatic potential map.

Cut-Off Summation Restores Data
Scalability

