

Shaders
CSCI 4830/7000

Advanced Computer Graphics
Spring 2011

What is a Shader?

● Wikipedia:

– A shader is a computer program used in 3D
computer graphics to determine the final
surface properties of an object or image. This
often includes arbitrarily complex descriptions of
texture mapping, light absorption, diffusion,
reflection, refraction, shadowing, surface
displacement and post-processing effects.

● Examples:

– Vertex color computed by a program
– Texture generated by a program instead of

image

How does a shader work?

● Shader Language used to specify
operations
– RenderMan, ISL, HLSL, Cg, GLSL

● Compile instructions into program
– e.g. glCompileShader()

● Shader performs calculations as part of
graphics pipeline

● Runs calculations on GPU instead of CPU

What is a Shader Language?

● Typically C/C++ like
– for, while, if, ... for control flow
– Adds special types like vec4 (4 component

vector) and mat4 (4x4 matrix) and operators
– Predefined variables used to get data

(gl_Vertex) and return result (gl_Position)

● Simplifies and extends C/C++ for
efficiency
– Matrix & vector operations supported in

hardware Graphics Processing Unit (GPU)
– Built-in functions like normal, blend, etc.

GL Shader Language (GLSL)
● Often call “GLSLang”
● Added to OpenGL 2.0

– First appeared as extension in OpenGL 1.4
– Can be accessed in older versions using

extentions
– GL Extension Wrangler (GLEW) often used

● Geared to real time graphics
– Inserted into OpenGL pipeline
– Vertex Shader to manipulate vertexes
– Fragment Shader to manipulate pixels

GLSL Resources

● Red Book
– Chapter 15 is a great introduction to GLSL
– Appendix I is a concise language reference

● Orange Book (3ed)
– Very detailed
– Not for beginners

● GLSL Quick Reference
– “Cheat sheet”

● Many online references (many pre-
OpenGL 2.0)
– http://www.lighthouse3d.com/opengl/glsl/

Where does GLSL fit?
● Vertex shader

– Transformations, color, texture
coordinates, ...

● Fragment shader
– Textures, Color Interpolation, Fog, ...

● OpenGL still does Z-buffering, etc.

Fixed Pipeline Example

How is this different from what
we have done before?

● GLSL instructions can run on GPU
– Matrix-vector multiplications done fast

● Without GLSL we influence the pipeline
using parameters and fixed operations
– Lighting calculated at vertexes
– Textures calculated at fragments
– Vertex-frament interpolation

● GL_SMOOTH bilinear interpolation
● GL_FLAT constant using last vertex

● With GLSL we can calculate values directly

How does this work with
OpenGL?

Other Shader Languages

● RenderMan
– Lucasfilm - Pixar - Disney

● OpenGL Shader (ISL)
– SGI Interactive Shader Language

● High-Level Shader Language (HLSL)
– Microsoft DirectX 9

● NVIDIA's Cg
– proprietary shading language

RenderMan

● First practical shading language (1988)
● De-facto entertainment industry standard
● Remains in widespread use today
● Generally used for off-line rendering

– Uncompromising image quality
– Little hardware acceleration

● Credits:
– Jurassic Park, Star Wars Prequels, Lord of the

Rings
– Toy Story, Finding Nemo, Monsters Inc, ...

● No relation to OpenGL in syntax or structure

The Rest (ISL, HLSL, Cg, ...)

● Syntax different but similar approach
● Generally similar in structure

– Vertex Shader
– Fragment Shader

● Geared towards real time graphics
– Hardware support
– Performance stressed

GLSL Variable Qualifiers
● uniform (e.g. gl_ModelViewMatrix)

– input to vertex and fragment shader from
OpenGL or application [read-only]

● attribute (e.g. gl_Vertex)
– input per-vertex to vertex shader from

OpenGL or application [read-only]

● varying (e.g. gl_FrontColor)
– output from vertex shader [read-write],

interpolated, then input to fragment shader
[read-only]

● const (e.g. gl_MaxLights)
– compile-time constant [read-only]

GLSL Versions
● GLSL 1.0 = OpenGL 1.4 (2002)

– The first portable shader

● GLSL 1.2 = OpenGL 2.0 (2004)
– The shader we will use

● GLSL 1.3 = OpenGL 3.0 (2008)
– Some changes in syntax
– Deprecates some features

● GLSL 3.3 = OpenGL 3.3
– From here on GLSL version match OpenGL

● Set minimum version using #version

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

