

CUDA
CSCI 4830/7000

Advanced Computer Graphics
Spring 2011

 2

CUDA
● “Compute Unified Device Architecture”
● General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
● Targeted software stack

– Compute oriented drivers, language, and tools
● Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation
– Interface designed for compute – graphics-free API
– Data sharing with OpenGL buffer objects
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

http://www.opengl.org/

 3

Parallel Computing on a GPU

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses

application
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

 4

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to
decide what data to work
on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

 5

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
0 1 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T
H

E

W
ID

T
H

W
ID

T
H

Matrix Multiplication Using
Multiple Blocks
● Break-up Pd into tiles
● Each block calculates

one tile
– Each thread calculates

one element
– Block size equal tile size

 6

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example

 7

Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

 8

Revised Matrix
Multiplication Kernel using

Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

 9

 // Setup the execution configuration

 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation
(Host-side Code)

 10

CUDA Thread Block

• All threads in a block execute the same
kernel program (SPMD)

• Programmer declares block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within
block
– Thread program uses thread id to select

work and address shared data

• Threads in the same block share data and
synchronize while doing their share of the
work

• Threads in different blocks cannot
cooperate
– Each block can execute in any order relative

to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls, NVIDIA

 11

Transparent Scalability
• Hardware is free to assigns blocks to any

processor at any time
– A kernel scales across any number of

parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks.

time

 12

G80 CUDA mode – A Review
• Processors execute computing threads
• New operating mode/HW interface for

computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

 13

G80 Example: Executing Thread
Blocks

• Threads are assigned to Streaming
Multiprocessors in block
granularity
– Up to 8 blocks to each SM as resource

allows
– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s
– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IUSP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

 14

G80 Example: Thread
Scheduling

 • Each Block is executed as 32-
thread Warps
– An implementation decision, not

part of the CUDA programming
model

– Warps are scheduling units in
SM

• If 3 blocks are assigned to an SM
and each block has 256 threads,
how many Warps are there in an
SM?
– Each Block is divided into

256/32 = 8 Warps
– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block 1 Warps

 15

G80 Example: Thread Scheduling
(Cont.)

● SM implements zero-overhead warp scheduling
– Warps whose next instruction has its operands ready for

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized

scheduling policy
– All threads in a warp execute the same instruction when

selected

 16

G80 Block Granularity Considerations
● For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can
take up to 768 threads, there are 12 Blocks. However, each SM
can only take up to 8 Blocks, only 512 threads will go into each
SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve
full capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can
fit into an SM!

 17

Example 49: Matrix Multiply

● Download CUDA from
http://developer.nvidia.com/object/cuda_3_0_download

s.html

● Default install is in /usr/local/cuda
● Usage: ex49 <Bw> <Bn>

– Bw*Bw threads per block
– Bn*Bn blocks
– Matrix size Bw*Bn x Bw*Bn

● Order n3 problem

 18

 19

 20

 21

 22

Application Programming
Interface

• The API is an extension to the C
programming language

• It consists of:
– Language extensions

• To target portions of the code for execution on the
device

– A runtime library split into:
• A common component providing built-in vector types

and a subset of the C runtime library in both host and
device codes

• A host component to control and access one or more
devices from the host

• A device component providing device-specific
functions

 23

Language Extensions:
Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z

unused)
• dim3 blockDim;

– Dimensions of the block in threads
• dim3 blockIdx;

– Block index within the grid
• dim3 threadIdx;

– Thread index within the block

 24

Common Runtime
Component:

Mathematical Functions
• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round

• Etc.

– When executed on the host, a given
function uses the C runtime implementation
if available

– These functions are only supported for
scalar types, not vector types

 25

Device Runtime
Component:

Mathematical Functions
• Some mathematical functions (e.g.
sin(x)) have a less accurate, but faster
device-only version (e.g. __sin(x))
– __pow
– __log, __log2, __log10
– __exp
– __sin, __cos, __tan

 26

Host Runtime Component
• Provides functions to deal with:

– Device management (including multi-device
systems)

– Memory management
– Error handling

• Initializes the first time a runtime function is
called

• A host thread can invoke device code on only
one device
– Multiple host threads required to run on multiple

devices

 27

Device Runtime
Component:

Synchronization Function
• void __syncthreads();

• Synchronizes all threads in a block
• Once all threads have reached this point,

execution resumes normally
• Used to avoid RAW / WAR / WAW hazards

when accessing shared or global memory
• Allowed in conditional constructs only if

the conditional is uniform across the
entire thread block

 28

G80 Implementation of CUDA Memories

• Each thread can:
– Read/write per-thread

registers
– Read/write per-thread

local memory
– Read/write per-block

shared memory
– Read/write per-grid

global memory
– Read/only per-grid

constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

 29

CUDA Variable Type Qualifiers

• __device__ is optional when used with
__local__, __shared__, or __constant__

• Automatic variables without any qualifier
reside in a register
– Except arrays that reside in local memory

blockblockshared__device__ __shared__ int SharedVar;

applicationgridglobal__device__ int GlobalVar;

threadthreadlocal__device__ __local__ int LocalVar;

grid

Scope

applicationconstant__device__ __constant__ int ConstantVar;

LifetimeMemoryVariable declaration

 30

Where to Declare Variables?

Can host access it?

Outside of
any Function

In the kernel

yes no

global
constant

register (automatic)
shared
local

 31

Variable Type Restrictions

• Pointers can only point to memory
allocated or declared in global memory:
– Allocated in the host and passed to the

kernel:
__global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable:
float* ptr = &GlobalVar;

 32

A Common Programming
Strategy

• Global memory resides in device memory
(DRAM) - much slower access than shared
memory

• So, a profitable way of performing
computation on the device is to tile data to
take advantage of fast shared memory:
– Partition data into subsets that fit into shared

memory
– Handle each data subset with one thread block

by:
• Loading the subset from global memory to shared

memory, using multiple threads to exploit memory-
level parallelism

• Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over
any data element

• Copying results from shared memory to global
memory

 33

A Common Programming
Strategy (Cont.)

• Constant memory also resides in device
memory (DRAM) - much slower access than
shared memory
– But… cached!
– Highly efficient access for read-only data

• Carefully divide data according to access
patterns
– R/Only constant memory (very fast if in cache)
– R/W shared within Block shared memory (very

fast)
– R/W within each thread registers (very fast)
– R/W inputs/results global memory (very slow)

For texture memory usage, see NVIDIA document.

 34
34

GPU Atomic Integer Operations

• Atomic operations on integers in global
memory:
– Associative operations on signed/unsigned

ints
– add, sub, min, max, ...
– and, or, xor
– Increment, decrement
– Exchange, compare and swap

• Requires hardware with compute
capability 1.1 and above.

 35

Review: Matrix
Multiplication Kernel using

Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

 36

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on G80?

• All threads access global memory
for their input matrix elements

– Two memory accesses (8 bytes)
per floating point multiply-add

– 4B/s of memory
bandwidth/FLOPS

– 4*346.5 = 1386 GB/s required
to achieve peak FLOP rating

– 86.4 GB/s limits the code at
21.6 GFLOPS

• The actual code runs at about 15
GFLOPS

• Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS

 37

Idea: Use Shared Memory to reuse
global memory data

● Each input element
is read by Width
threads.

● Load each element
into Shared
Memory and have
several threads use
the local version to
reduce the memory
bandwidth
– Tiled algorithms

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

 38

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
0 1 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T
H

T
IL

E
_W

ID
T
H

T
IL

E
_W

ID
T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Break up the execution of
the kernel into phases so
that the data accesses in
each phase is focused on
one subset (tile) of Md and
Nd

 39

Pd1,0

A Small Example

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

 40

Every Md and Nd Element is used
exactly twice in generating a 2X2 tile of

P

M3,1 * N1,3

M2,1 * N1,2

M1,1 * N1,1

M0,1 * N1,0

P1,1

thread1,1

M3,1 * N0,3

M2,1 * N0,2

M1,1 * N0,1

M0,1 * N0,0

P0,1

thread0,1

M3,0 * N1,3M3,0 * N0,3

M2,0 * N1,2M2,0 * N0,2

M1,0 * N1,1M1,0 * N0,1

M0,0 * N1,0M0,0 * N0,0

P1,0

thread1,0

P0,0

thread0,0

Access
order

 41

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Breaking Md and Nd into Tiles

● Break up the inner
product loop of each
thread into phases

● At the beginning of each
phase, load the Md and
Nd elements that
everyone needs during
the phase into shared
memory

● Everyone access the Md
and Nd elements from
the shared memory
during the phase

 42

Each phase of a Thread Block uses one
tile from Md and one from Nd

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,3

↓
Nds1,1

Md3,1

↓
Mds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,1

↓
Nds1,1

Md1,1

↓ Mds1,1

T1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,3

↓
Nds0,1

Md2,1

↓
Mds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,1

↓
Nds0,1

Md0,1

↓ Mds0,1

T0,1

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,2

↓
Nds1,0

Md3,0

↓
Mds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,0

↓
Nds1,0

Md1,0

↓ Mds1,0

T1,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,2

↓
Nds0,0

Md2,0

↓
Mds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,0

↓
Nds0,0

Md0,0

↓ Mds0,0

T0,0

Step 6Step 5Step 4Phase 1 Phase 2

time

 43

Tiled Matrix Multiplication
Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
• Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
• __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
• Pvalue += Mds[ty][k] * Nds[k][tx];
14. __syncthreads();
 }
15. Pd[Row*Width + Col] = Pvalue;
}

 44

CUDA Code – Kernel
Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,

 Width / TILE_WIDTH);

 45

First-order Size Considerations in G80

● Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

● There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
– TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full

capacity)

● Each thread block perform 2*256 = 512 float loads
from global memory for 256 * (2*16) = 8,192 mul/add
operations.
– Memory bandwidth no longer a limiting factor

 46

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
0 1 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T
H

T
IL

E
_W

ID
T
H

T
IL

E
_W

ID
T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Each block computes one
square sub-matrix Pdsub of
size TILE_WIDTH

• Each thread computes one
element of Pdsub

m

kbx

by

k

m

 47

G80 Shared Memory and Threading

● Each SM in G80 has 16KB shared memory
– SM size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of

shared memory.
– The shared memory can potentially have up to 8 Thread Blocks

actively executing
● This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads

per block)
● The threading model limits the number of thread blocks to 3 so shared

memory is not the limiting factor here
– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared

memory usage per thread block, allowing only up to two thread
blocks active at the same time

● Using 16x16 tiling, we reduce the accesses to the global memory
by a factor of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!

 48

Tiled Matrix Multiplication
Kernel__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
1. __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
• Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
• __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
• Pvalue += Mds[ty][k] * Nds[k][tx];
14. __syncthreads();
 }
15. Pd[Row*Width + Col] = Pvalue;
}

 49

Tiling Size Effects
G

F
LO

P
S

0

10

20

30

40

50

60

70

80

90

100
til

e
d

o
n

ly

til
e

d
 &

u
n

ro
lle

d

til
e

d
o

n
ly

til
e

d
 &

u
n

ro
lle

d

til
e

d
o

n
ly

til
e

d
 &

u
n

ro
lle

d

til
e

d
o

n
ly

til
e

d
 &

u
n

ro
lle

d

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

 50

• Global variables declaration
– __host__
– __device__... __global__, __constant__, __texture__

• Function prototypes
– __global__ void kernelOne(…)
– float handyFunction(…)

• Main ()
– allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
– transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…)
– execution configuration setup
– kernel call – kernelOne<<<execution configuration>>>(args…);
– transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…)
– optional: compare against golden (host computed) solution

• Kernel – void kernelOne(type args,…)
– variables declaration - __local__, __shared__

• automatic variables transparently assigned to registers or local memory
– syncthreads()…

• Other functions
– float handyFunction(int inVar…);

Summary- Typical Structure of a
CUDA Program

repeat
as needed

	Slide 1
	CUDA
	Parallel Computing on a GPU
	Block IDs and Thread IDs
	Matrix Multiplication Using Multiple Blocks
	A Small Example
	A Small Example: Multiplication
	Revised Matrix Multiplication Kernel using Multiple Blocks
	Revised Step 5: Kernel Invocation (Host-side Code)
	CUDA Thread Block
	Transparent Scalability
	G80 CUDA mode – A Review
	G80 Example: Executing Thread Blocks
	G80 Example: Thread Scheduling
	G80 Example: Thread Scheduling (Cont.)
	G80 Block Granularity Considerations
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Application Programming Interface
	Language Extensions: Built-in Variables
	Common Runtime Component: Mathematical Functions
	Device Runtime Component: Mathematical Functions
	Host Runtime Component
	Device Runtime Component: Synchronization Function
	G80 Implementation of CUDA Memories
	CUDA Variable Type Qualifiers
	Where to Declare Variables?
	Variable Type Restrictions
	A Common Programming Strategy
	A Common Programming Strategy (Cont.)
	GPU Atomic Integer Operations
	Review: Matrix Multiplication Kernel using Multiple Blocks
	How about performance on G80?
	Idea: Use Shared Memory to reuse global memory data
	Tiled Multiply
	Slide 39
	Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P
	Breaking Md and Nd into Tiles
	Each phase of a Thread Block uses one tile from Md and one from Nd
	Tiled Matrix Multiplication Kernel
	CUDA Code – Kernel Execution Configuration
	First-order Size Considerations in G80
	Slide 46
	G80 Shared Memory and Threading
	Slide 48
	Tiling Size Effects
	Summary- Typical Structure of a CUDA Program

