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CUDA
● “Compute Unified Device Architecture”
● General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
● Targeted software stack

– Compute oriented drivers, language, and tools
● Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation 
– Interface designed for compute – graphics-free API
– Data sharing with OpenGL buffer objects 
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

http://www.opengl.org/
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Parallel Computing on a GPU 

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses 

application 
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870
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Figure 3.2. An Example of CUDA Thread Organization.
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Block IDs and Thread IDs

• Each thread uses IDs to 
decide what data to work 
on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
addressing when 
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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Matrix Multiplication Using 
Multiple Blocks
● Break-up Pd into tiles
● Each block calculates 

one tile
– Each thread calculates 

one element
– Block size equal tile size
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Revised Matrix 
Multiplication Kernel using 

Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}
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    // Setup the execution configuration

       dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
       dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

    // Launch the device computation threads!
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation
(Host-side Code) 
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CUDA Thread Block

• All threads in a block execute the same 
kernel program (SPMD)

• Programmer declares block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within 
block
– Thread program uses thread id to select 

work and address shared data

• Threads in the same block share data and 
synchronize while doing their share of the 
work

• Threads in different blocks cannot 
cooperate
– Each block can execute in any order relative 

to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 …          m   

Thread program

Courtesy: John Nickolls, NVIDIA
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Transparent Scalability
• Hardware is free to assigns blocks to any 

processor at any time
– A kernel scales across any number of 

parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative 
to other blocks. 

time
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G80 CUDA mode – A Review
• Processors execute computing threads
• New operating mode/HW interface for 

computing
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G80 Example: Executing Thread 
Blocks

• Threads are assigned to Streaming 
Multiprocessors in block 
granularity
– Up to 8 blocks to each SM as resource 

allows
– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3 
blocks 

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s
– SM manages/schedules thread 

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IUSP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0
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G80 Example: Thread 
Scheduling

 • Each Block is executed as 32-
thread Warps
– An implementation decision, not 

part of the CUDA programming 
model

– Warps are scheduling units in 
SM

• If 3 blocks are assigned to an SM 
and each block has 256 threads, 
how many Warps are there in an 
SM?
– Each Block is divided into 

256/32 = 8 Warps
– There are 8 * 3 = 24 Warps 

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block 1 Warps
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G80 Example: Thread Scheduling 
(Cont.)

● SM implements zero-overhead warp scheduling
– Warps whose next instruction has its operands ready for 

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized 

scheduling policy
– All threads in a warp execute the same instruction when 

selected
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G80 Block Granularity Considerations
● For Matrix Multiplication using multiple blocks, should I 

use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can 
take up to 768 threads, there are 12 Blocks. However, each SM 
can only take up to 8 Blocks, only 512 threads will go into each 
SM!

– For 16X16, we have 256 threads per Block. Since each SM can 
take up to 768 threads, it can take up to 3 Blocks and achieve 
full capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can 
fit into an SM!
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Example 49:  Matrix Multiply

● Download CUDA from
http://developer.nvidia.com/object/cuda_3_0_download

s.html

● Default install is in /usr/local/cuda
● Usage:  ex49 <Bw> <Bn>

– Bw*Bw threads per block
– Bn*Bn blocks
– Matrix size Bw*Bn x Bw*Bn

● Order n3 problem
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Application Programming 
Interface

• The API is an extension to the C 
programming language

• It consists of:
– Language extensions

• To target portions of the code for execution on the 
device

– A runtime library split into:
• A common component providing built-in vector types 

and a subset of the C runtime library in both host and 
device codes

• A host component to control and access one or more 
devices from the host

• A device component providing device-specific 
functions



    23

Language Extensions:
Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z 

unused)
• dim3 blockDim;

– Dimensions of the block in threads
• dim3 blockIdx;

– Block index within the grid
• dim3 threadIdx;

– Thread index within the block
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Common Runtime 
Component:

Mathematical Functions
• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round

• Etc.

– When executed on the host, a given 
function uses the C runtime implementation 
if available

– These functions are only supported for 
scalar types, not vector types
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Device Runtime 
Component:

Mathematical Functions
• Some mathematical functions (e.g. 
sin(x)) have a less accurate, but faster 
device-only version (e.g. __sin(x))
– __pow
– __log, __log2, __log10
– __exp
– __sin, __cos, __tan
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Host Runtime Component
• Provides functions to deal with:

– Device management (including multi-device 
systems)

– Memory management
– Error handling

• Initializes the first time a runtime function is 
called

• A host thread can invoke device code on only 
one device
– Multiple host threads required to run on multiple 

devices
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Device Runtime 
Component:

Synchronization Function
• void __syncthreads();

• Synchronizes all threads in a block
• Once all threads have reached this point, 

execution resumes normally
• Used to avoid RAW / WAR / WAW hazards 

when accessing shared or global memory
• Allowed in conditional constructs only if 

the conditional is uniform across the 
entire thread block
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G80 Implementation of  CUDA Memories

• Each thread can:
– Read/write per-thread 

registers
– Read/write per-thread 

local memory
– Read/write per-block 

shared memory
– Read/write per-grid 

global memory
– Read/only per-grid 

constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory
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CUDA Variable Type Qualifiers

•  __device__ is optional when used with 
__local__,  __shared__, or  __constant__

• Automatic variables without any qualifier 
reside in a register
– Except arrays that reside in local memory

blockblockshared__device__ __shared__   int SharedVar;

applicationgridglobal__device__              int GlobalVar;

threadthreadlocal__device__ __local__    int LocalVar;

grid

Scope

applicationconstant__device__ __constant__ int ConstantVar;

LifetimeMemoryVariable declaration
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Where to Declare Variables?

Can host access it?

Outside of 
any Function

In the kernel

yes no

global
constant

register (automatic)
shared
local
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Variable Type Restrictions

• Pointers can only point to memory 
allocated or declared in global memory:
– Allocated in the host and passed to the 

kernel: 
__global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable: 
float* ptr = &GlobalVar;
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A Common Programming 
Strategy

• Global memory resides in device memory 
(DRAM) - much slower access than shared 
memory

• So, a profitable way of performing 
computation on the device is to tile data to 
take advantage of fast shared memory:
– Partition data into subsets that fit into shared 

memory
– Handle each data subset with one thread block 

by:
• Loading the subset from global memory to shared 

memory, using multiple threads to exploit memory-
level parallelism

• Performing the computation on the subset from shared 
memory; each thread can efficiently multi-pass over 
any data element

• Copying results from shared memory to global 
memory
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A Common Programming 
Strategy (Cont.)

• Constant memory also resides in device 
memory (DRAM) - much slower access than 
shared memory
– But… cached!
– Highly efficient access for read-only data

• Carefully divide data according to access 
patterns
– R/Only  constant memory (very fast if in cache)
– R/W shared within Block  shared memory (very 

fast)
– R/W within each thread  registers (very fast)
– R/W inputs/results  global memory (very slow)

For texture memory usage, see NVIDIA document.
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GPU Atomic Integer Operations

• Atomic operations on integers in global 
memory:
– Associative operations on signed/unsigned 

ints
– add, sub, min, max, ...
– and, or, xor
– Increment, decrement
– Exchange, compare and swap

• Requires hardware with compute 
capability 1.1 and above.
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Review: Matrix 
Multiplication Kernel using 

Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}
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Grid
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How about performance on G80?

• All threads access global memory 
for their input matrix elements

– Two memory accesses (8 bytes) 
per floating point multiply-add

– 4B/s of memory 
bandwidth/FLOPS

– 4*346.5 = 1386 GB/s required 
to achieve peak FLOP rating

– 86.4 GB/s limits the code at 
21.6 GFLOPS

• The actual code runs at about 15 
GFLOPS

• Need to drastically cut down 
memory accesses to get closer to 
the peak 346.5 GFLOPS
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Idea: Use Shared Memory to reuse 
global memory data

● Each input element 
is read by Width 
threads.

● Load each element 
into Shared 
Memory and have 
several threads use 
the local version to 
reduce the memory 
bandwidth
– Tiled algorithms
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Tiled Multiply

• Break up the execution of 
the kernel into phases so 
that the data accesses in 
each phase is focused on 
one subset (tile) of Md and 
Nd
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Every Md and Nd Element is used 
exactly twice in generating a 2X2 tile of 

P

M3,1 * N1,3
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thread1,1
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Breaking Md and Nd into Tiles

● Break up the inner 
product loop of each 
thread into phases

● At the beginning of each 
phase, load the Md and 
Nd elements that 
everyone needs during 
the phase into shared 
memory

● Everyone access the Md 
and Nd elements from 
the shared memory 
during the phase
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Each phase of a Thread Block uses one 
tile from Md and one from Nd

PdValue1,1 += 
Mds0,1*Nds1,0 + 
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Tiled Matrix Multiplication 
Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1.  __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2.  __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;
4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5.  int Row = by * TILE_WIDTH + ty;
6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
• Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
• __syncthreads();

12.    for (int k = 0; k < TILE_WIDTH; ++k)
•   Pvalue += Mds[ty][k] * Nds[k][tx];
14.    __syncthreads();
    }
15. Pd[Row*Width + Col] = Pvalue;
}
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CUDA Code – Kernel 
Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width  / TILE_WIDTH, 

   Width /  TILE_WIDTH);
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First-order Size Considerations in G80

● Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

● There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
– TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full 

capacity) 

● Each thread block perform 2*256 = 512 float loads 
from global memory for 256 * (2*16) = 8,192 mul/add 
operations. 
– Memory bandwidth no longer a limiting factor
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Tiled Multiply

• Each block computes one 
square sub-matrix Pdsub of 
size TILE_WIDTH

• Each thread computes one 
element of Pdsub

m
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G80 Shared Memory and Threading

● Each SM in G80 has 16KB shared memory
– SM size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of 

shared memory. 
– The shared memory can potentially have up to 8 Thread Blocks 

actively executing 
● This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads 

per block)
● The threading model limits the number of thread blocks to 3 so shared 

memory is not the limiting factor here
– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared 

memory usage per thread block, allowing only up to two thread 
blocks active at the same time

● Using 16x16 tiling, we reduce the accesses to the global memory 
by a factor of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!
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Tiled Matrix Multiplication 
Kernel__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
1.  __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2.  __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;
4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5.  int Row = by * TILE_WIDTH + ty;
6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
• Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
• __syncthreads();

12.    for (int k = 0; k < TILE_WIDTH; ++k)
•   Pvalue += Mds[ty][k] * Nds[k][tx];
14.    __syncthreads();
    }
15. Pd[Row*Width + Col] = Pvalue;
}
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Tiling Size Effects
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• Global variables declaration
– __host__
– __device__... __global__, __constant__, __texture__

• Function prototypes
– __global__ void kernelOne(…)
– float handyFunction(…)

• Main ()
– allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes )
– transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…)
– execution configuration setup
– kernel call – kernelOne<<<execution configuration>>>( args… );
– transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…)
– optional: compare against golden (host computed) solution

• Kernel – void kernelOne(type args,…)
– variables declaration -  __local__, __shared__

• automatic variables transparently assigned to registers or local memory
– syncthreads()…

• Other functions
– float handyFunction(int inVar…);

Summary- Typical Structure of a 
CUDA Program

repeat
as needed
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