

CSCI 4239/5239

Advanced
Computer

 Graphics
Spring 2018

Instructor

● Willem A (Vlakkies) Schreüder
● Email: willem@prinmath.com

– Begin subject with 4239 or 5239
– Resend email not answered promptly

● Office Hours:
– ECST 121 Thursday 4-5pm
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm

mailto:willem@prinmath.com

Course Objectives
● Explore advanced topics in

 Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Assignments: Practical OpenGL
– Building useful applications
– Use Qt to build professional apps

Course Organization and Grading

● Class participation (50% grade)
– First hour: Discussion/Show and tell

● Weekly homework assignments
● Volunteers and/or round robin

– Second hour: Introduction of next topic

● Semester project (50% grade)
– Build a significant application in OpenGL
– 10 minute presentation last class periods

● No formal tests or final
● You can skip ONE homework

Assumptions

● You need to be fluent in C/C++
– Examples are in C++
– You can do assignments in any language

● I may need help getting it to work on my system

● You need to be comfortable with OpenGL
– CSCI 4229/5229 or equivalent
– You need a working Qt/OpenGL environment

Class Attendance
● Attendance is highly encouraged
● More of a seminar than a lecture

– Participation is important

● I don't take attendance
● Lectures are available if you miss class

– If you are sick stay home

● Lecture video access
– In class students use Canvas
– BBA students will be notified

Grading
● Satisfactory complete all assignments => A

– The goal is to impress your friends

● Assignments must be submitted on time
unless prior arrangements are made
– Due by 8am Thursday morning
– Grace period until Thursday noon

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● Grade <100 means not satisfactory (not A)

Code Reuse
● Code from the internet or class may be used

– You take responsibility for any bugs in the code
● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Submitting code without crediting the
source is violation of the CU honor code

● The assignment is a minimum requirement

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs

– Clean code

● Good code organization
● Appropriate to the problem at hand

Text

● OpenGL Programming Guide (9ed)
– Kessenich, Sellers & Schreiner
– “OpenGL Vermillion Book”
– Implementing Shaders using GLSL
– Don't get an older edition

● Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required

Other Texts
● OpenGL SuperBible: Comprehensive Tutorial

and Reference (7ed)
– Sellers, Wright & Haemel
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples

Other Texts

● OpenGL ES 3.0 Programming Guide
– Ginsburg & Purnomo
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● iPhone 3D Programming
– Rideout
– Great introduction to portable programs

● WebGL Programming Guide
– Matsuda & Lea

Other Texts

● Programming Massively Parallel Processors
– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples

Other Texts

● Advanced Graphics Programming Using
OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced

topics

OpenGL Resources
● www.google.com

– Need I say more?

● www.opengl.org
– Code and tutorials

● nehe.gamedev.net
www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229

Assignment 0
● Due: Friday Jan 19 by 9pm
● Sign up with moodle.cs.colorado.edu

– Enrollment key: 42395239
– A picture will help me remember your names

● Submit
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)
– BBA students propose schedule is necessary

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran, Perl & Python
● Outside interests

– Aviation
– Amateur radio

Hardware Requirements
● You need hardware that will run shaders well

– Integrated graphics may not be adequate
– Graphics cards from the last 5 years should be OK
– GPU computing needs high end hardware
– A VM is probably not going to cut it

● Try on different hardware
– AMD & nVidia sometimes behave differently
– Try it on my machine during office hours if you

are presenting

Why Qt
● Why drop GLUT?

– It is easy to use, but limited capabilities
– Apple is dropping GLUT

● Pros
– It is cross platform: Linux/WinX/OSX/iOS/...
– Provides framework for professional apps
– Supports controls, sound, image loading, etc

● Cons
– Hides some of the OpenGL elements
– Steeper learning curve than GLUT

OpenGL Extension Wrangler
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– For MinGW see moodle instructions

Assignment 1
● Due: Thursday January 25
● NDC to RGB shader

– For every point on the objects, the color
should be determined by its position in
normalized device coordinates

● The goal is to make this as short and
elegant as possible
– Shader Golf
– Figure this out for yourself

● Figure out how to do this with Qt

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 16.04.3 LTS
– Ubuntu provides Qt version 5.5.1

● Submit using moodle.cs.colorado.edu
– ZIP or TAR
– Name projects hw1, hw2, ...
– Create a .pro file named hwX.pro
– Set window title to Assignment X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if no

grade or less than 100%

Project

● Should be a program with a significant
graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 22
– Progress: Thursday April 5
– Review: Thursday April 19
– Final: Tuesday May 1

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on another machine
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...

Class Discussions
● If have a special interest in the topic and

have something special to contribute
VOLUNTEER to lead the discussion

● If by Sunday there are no volunteers, I will
appoint volunteers some on a round robin
basis (in order by MD5 of names)
– You can trade places, but you are responsible

for arranging a substitute

● Everybody should do this at least once,
but you can do more if you want
– BBA students Skype or screencast

● Popular topics may have more presenters

What to Present

● Should be (mostly) the assigned topic
– Feel free to push the envelope
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting

How to Present
● 15 minutes can be forever or over in a wink

– Plan your time (practice a bit)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions

How to Listen

● If you don't understand, ask
– Helps the presenter understand what's new

to you

● If you disagree, say so
– Maybe the presenter misspoke or has an

different opinion worth discussing

● Be nice – you may be next!

BBA Students

● Suggest ways you can present remotely
● Provide screen cast or similar demonstration
● Skype or other desktop sharing

– Performance may be an issue

● Stick to the class schedule if possible

Parallel Flight Simulator Project
● Consider joining a project with many members

– Each member has a specific subtask
● World visualization
● Special effects
● Flight dynamics
● Multi-function displays (instruments)
● Networking
● Flight controls
● Sound

– Rotating project manager
● Responsible for managing the project for a week
● Provide concise report of what was done the last week
● Lay out a plan for what should be done the next week

● Somewhat like a real software project
– I will be the client

What is a Shader?

● A shader is a computer program that runs on the
GPU to calculate the properties of vertexes, pixels
and other graphical processing

● Examples:

– Vertex position or color computed by a program
– Texture generated by a program
– Per-pixel lighting
– Image processing
– Cartoon shading

How does a shader work?

● Shader Language used to specify
operations
– RenderMan, ISL, HLSL, Cg, GLSL

● Compile instructions into program
– e.g. glCompileShader()

● Shader performs calculations as part of
graphics pipeline

● Runs calculations on GPU instead of CPU

What is a Shader Language?

● Typically C/C++ like
– for, while, if, ... for control flow
– Adds special types like vec4 (4 component

vector) and mat4 (4x4 matrix) and operators
– Predefined variables used to get data

(gl_Vertex) and return result (gl_Position)

● Simplifies and extends C/C++ for
efficiency
– Matrix & vector operations supported in

hardware Graphics Processing Unit (GPU)
– Built-in functions like normal, blend, etc.

GL Shader Language (GLSL)
● Often call “GLSLang”
● Added to OpenGL 2.0

– First appeared as extension in OpenGL 1.4
– Can be accessed in older versions using

extentions
– GL Extension Wrangler (GLEW) often used

● Geared to real time graphics
– Inserted into OpenGL pipeline
– Vertex Shader to manipulate vertexes
– Fragment Shader to manipulate pixels

OpenGL Deprecation
● I will mostly use OpenGL 2.x

– Feature rich
– Flat learning curve
– More advanced examples will use 3.x and 4.x

● OpenGL Core Profile concentrates on rendering
– Improved execution time performance

● User must provide deprecated functionality
– Steepens the learning curve
– Deprecated features in Compatibility Profile
– Increases reliance on third party libraries

Where does GLSL fit?
● Vertex shader

– Transformations, color, texture
coordinates, ...

● Fragment shader
– Textures, Color Interpolation, Fog, ...

● OpenGL still does Z-buffering, etc.

Fixed Pipeline Example

How is this different from what
we have done before?

● GLSL instructions can run on GPU
– Matrix-vector multiplications done fast

● Without GLSL we influence the pipeline
using parameters and fixed operations
– Lighting calculated at vertexes
– Textures calculated at fragments
– Vertex-frament interpolation

● GL_SMOOTH bilinear interpolation
● GL_FLAT constant using last vertex

● With GLSL we can calculate values directly

How does this work with
OpenGL?

Other Shader Languages

● RenderMan
– Lucasfilm - Pixar - Disney

● OpenGL Shader (ISL)
– SGI Interactive Shader Language

● High-Level Shader Language (HLSL)
– Microsoft DirectX 9

● NVIDIA's Cg
– proprietary shading language

RenderMan

● First practical shading language (1988)
● De-facto entertainment industry standard
● Remains in widespread use today
● Generally used for off-line rendering

– Uncompromising image quality
– Little hardware acceleration

● Credits:
– Jurassic Park, Star Wars Prequels, Lord of the Rings
– Toy Story, Finding Nemo, Monsters Inc, ...

● No relation to OpenGL in syntax or structure

The Rest (ISL, HLSL, Cg, ...)

● Syntax different but similar approach
● Generally similar in structure

– Vertex Shader
– Fragment Shader

● Geared towards real time graphics
– Hardware support
– Performance stressed

GLSL Versions
● GLSL 1.0 = OpenGL 1.4 (2002)

– The first portable shader

● GLSL 1.2 = OpenGL 2.0 (2004)
– The shader we will use

● GLSL 1.3 = OpenGL 3.0 (2008)
– Some changes in syntax
– Deprecates some features

● GLSL 3.3 = OpenGL 3.3
– From here on GLSL version match OpenGL

● Set minimum version using #version

GLSL 1.2 Variable Qualifiers
● uniform (e.g. gl_ModelViewMatrix)

– input to vertex and fragment shader from
OpenGL or application [read-only]

● attribute (e.g. gl_Vertex)
– input per-vertex to vertex shader from

OpenGL or application [read-only]

● varying (e.g. gl_FrontColor)
– output from vertex shader [read-write],

interpolated, then input to fragment shader
[read-only]

● const (e.g. gl_MaxLights)
– compile-time constant [read-only]

The problem with shaders
● EXTREMELY hard to debug

– No “print” statements

● You have to have to do lighting yourself
● Support is spotty

– GLSL requires OpenGL 2.0 or extensions
– Some features are very new
– Generally needs decent hardware

● So why use it?
– Ultimate flexibility
– Unsupported features (e.g. bump maps)

Installing Qt
● Get Qt 5 from http://www.qt.io/download/

– Open source is free but requires sharing

● Ubuntu:
– apt-get install qt5-default

● OSX
– Install Xcode with command line tools
– Install Qt

● Windows
– Install mingw
– Install Qt

http://www.qt.io/download/

Using Qt

● Use QOpenGLWidget
– Introduced in Qt 5.4
– Replaces older QGLWidget
– The changes are mostly internal
– Methods are the same, so painless migration

● Expand on my examples
– Starting with my examples as a framework

flattens the learning curve
– Make sure you understand what is going on
– CUgl class used in later examples

Building hw01 with Qt

● Create hw01.pro
● Edit source code
● Run qmake hw01.pro to build makefile
● Compile using make
● Run hw01
● Before ZIPing run make distclean

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

