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Instructor

● Willem A (Vlakkies) Schreüder
● Email: willem@prinmath.com

– Begin subject with 4239 or 5239
– Resend email not answered promptly

● Office Hours:
– ECST 121 Thursday 4-5pm
– Other times by appointment

● Weekday Contact Hours: 6:30am - 9:00pm

mailto:willem@prinmath.com


   

Course Objectives
● Explore advanced topics in

   Computer Graphics
– Pipeline Programming (Shaders)
– Embedded System (OpenGL ES)
– GPU Programming (CUDA&OpenCL)
– Ray Tracing
– Special topics

● Assignments:  Practical OpenGL
– Building useful applications
– Use Qt to build professional apps



   

Course Organization and Grading

● Class participation (50% grade)
– First hour:  Discussion/Show and tell

● Weekly homework assignments
● Volunteers and/or round robin

– Second hour:  Introduction of next topic

● Semester project (50% grade)
– Build a significant application in OpenGL
– 10 minute presentation last class periods

● No formal tests or final
● You can skip ONE homework



   

Assumptions

● You need to be fluent in C/C++
– Examples are in C++
– You can do assignments in any language

● I may need help getting it to work on my system

● You need to be comfortable with OpenGL
– CSCI 4229/5229 or equivalent 
– You need a working Qt/OpenGL environment



   

Class Attendance
● Attendance is highly encouraged
● More of a seminar than a lecture

– Participation is important

● I don't take attendance
● Lectures are available if you miss class

– If you are sick stay home

● Lecture video access
– In class students use Canvas
– BBA students will be notified



   

Grading
● Satisfactory complete all assignments => A

– The goal is to impress your friends

● Assignments must be submitted on time 
unless prior arrangements are made
– Due by 8am Thursday morning
– Grace period until Thursday noon

● Assignments must be completed individually
– Stealing ideas are encouraged
– Code reuse with attribution is permitted

● Grade <100 means not satisfactory (not A)



   

Code Reuse
● Code from the internet or class may be used

– You take responsibility for any bugs in the code
● That includes bugs in my code

– Make the code your own
● Understand it
● Format it consistently

– Improve upon what you found
● I may ask what improvements you made

– Submitting code without crediting the 
source is  violation of the CU honor code

● The assignment is a minimum requirement



   

Code Expectations
● I expect professional standards in coding

– Informative comments
– Consistent formatting

● Expand tabs

– Clean code

● Good code organization
● Appropriate to the problem at hand



   

Text

● OpenGL Programming Guide (9ed)
– Kessenich, Sellers & Schreiner
– “OpenGL Vermillion Book”
– Implementing Shaders using GLSL
– Don't get an older edition

●  Ray Tracing from the Ground Up
– Kevin Suffern
– Theory and practice of ray tracing

● Recommended by not required



   

Other Texts
● OpenGL SuperBible: Comprehensive Tutorial 

and Reference (7ed)
– Sellers, Wright & Haemel
– Good all-round theory and applications

● Graphics Shaders: Theory and Practice (2ed)
– Bailey & Cunningham
– Great shader examples



   

Other Texts

● OpenGL ES 3.0 Programming Guide
– Ginsburg & Purnomo
– “OpenGL Purple Book”
– Has a chapter specific to the iPhone

● iPhone 3D Programming
– Rideout
– Great introduction to portable programs

● WebGL Programming Guide
– Matsuda & Lea



   

Other Texts

● Programming Massively Parallel Processors
– Kirk & Hwu
– Explains GPU programming using CUDA
– Shows how to adopt OpenCL

● CUDA by Example
– Sanders and Kandrot
– Great introduction using examples



   

Other Texts

●  Advanced Graphics Programming Using 
OpenGL
– Tom McReynolds and David Blythe
– Great reference for miscellaneous advanced 

topics



   

OpenGL Resources
● www.google.com

– Need I say more?

● www.opengl.org
– Code and tutorials

● nehe.gamedev.net
www.lighthouse3d.com
– Excellent tutorials

● www.mesa3d.org
– Code of “internals”

● www.prinmath.com/csci5229
– Example programs from CSCI 4229/5229



   

Assignment 0
● Due: Friday Jan 19 by 9pm
● Sign up with moodle.cs.colorado.edu

– Enrollment key:  42395239
– A picture will help me remember your names

● Submit
– Your study area
– Platform (Hardware, Graphics, OS, ...)
– Any specific interests in computer graphics
– Specific topics you want to see covered
– Initial project idea(s)
– BBA students propose schedule is necessary



   

My information
● Mathematical modeling and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran, Perl & Python
● Outside interests

– Aviation
– Amateur radio



   

Hardware Requirements
● You need hardware that will run shaders well

– Integrated graphics may not be adequate
– Graphics cards from the last 5 years should be OK
– GPU computing needs high end hardware
– A VM is probably not going to cut it

● Try on different hardware
– AMD & nVidia sometimes behave differently
– Try it on my machine during office hours if you 

are presenting



   

Why Qt
● Why drop GLUT?

– It is easy to use, but limited capabilities
– Apple is dropping GLUT

● Pros
– It is cross platform: Linux/WinX/OSX/iOS/...
– Provides framework for professional apps
– Supports controls, sound, image loading, etc

● Cons
– Hides some of the OpenGL elements
– Steeper learning curve than GLUT



   

OpenGL Extension Wrangler 
(GLEW)

● Maps OpenGL extensions at run time
– Provides headers for latest OpenGL
– Finds vendor support at run time

● Check support for specific functions or 
OpenGL version at run time
– Crashes if unsupported features are used

● Use only if you have to (Windows mostly)
– Set -dUSEGLEW to selectively invoke it
– Do NOT require GLEW (I don't need it)
– For MinGW see moodle instructions



   

Assignment 1
● Due: Thursday January 25
● NDC to RGB shader

– For every point on the objects, the color 
should be determined by its position in 
normalized device coordinates

● The goal is to make this as short and 
elegant as possible
– Shader Golf
– Figure this out for yourself

● Figure out how to do this with Qt



   

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 16.04.3 LTS
– Ubuntu provides Qt version 5.5.1

● Submit using moodle.cs.colorado.edu
– ZIP or TAR
– Name projects hw1, hw2, ... 
– Create a .pro file named hwX.pro
– Set window title to Assignment X: Your Name

● Include number of hours spent on assignment
● Check my feedback and resubmit if no 

grade or less than 100%



   

Project

● Should be a program with a significant 
graphics component
– Something useful in your research/work
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Thursday March 22
– Progress: Thursday April 5
– Review: Thursday April 19
– Final: Tuesday May 1



   

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on another machine
– Stick to C/C++ unless you have a good reason

● Maintain thy backups...



   

Class Discussions
● If have a special interest in the topic and 

have something special to contribute 
VOLUNTEER to lead the discussion

● If by Sunday there are no volunteers, I will 
appoint volunteers some on a round robin 
basis  (in order by MD5 of names)
– You can trade places, but you are responsible 

for arranging a substitute

● Everybody should do this at least once, 
but you can do more if you want
– BBA students Skype or screencast

● Popular topics may have more presenters



   

What to Present

● Should be (mostly) the assigned topic
– Feel free to push the envelope
– Keep it within reach of the class

● Show what you did for the assignment
– Cover principles or theory I omitted
– Show and describe code of interest
– Demonstrate “gotchas” you encountered
– Impress your friends

● Keep it interesting



   

How to Present
● 15 minutes can be forever or over in a wink

– Plan your time (practice a bit)
– If you use slides figure 2 minutes per slide

● Plan your presentation
– What are the key points you want to convey?
– How do you illustrate the key points?

● The presentation should TEACH
– Teaching is learning twice
– Adapt to the questions



   

How to Listen

● If you don't understand, ask
– Helps the presenter understand what's new 

to you

● If you disagree, say so
– Maybe the presenter misspoke or has an 

different opinion worth discussing

● Be nice – you may be next!



   

BBA Students

● Suggest ways you can present remotely
● Provide screen cast or similar demonstration
● Skype or other desktop sharing

– Performance may be an issue

● Stick to the class schedule if possible



   

Parallel Flight Simulator Project
● Consider joining a project with many members

– Each member has a specific subtask
● World visualization
● Special effects
● Flight dynamics
● Multi-function displays (instruments)
● Networking
● Flight controls
● Sound

– Rotating project manager
● Responsible for managing the project for a week
● Provide concise report of what was done the last week
● Lay out a plan for what should be done the next week

● Somewhat like a real software project
– I will be the client



   

What is a Shader?

● A shader is a computer program that runs on the 
GPU to calculate the properties of vertexes, pixels 
and other graphical processing

● Examples:

– Vertex position or color computed by a program
– Texture generated by a program
– Per-pixel lighting
– Image processing
– Cartoon shading



   

How does a shader work?

● Shader Language used to specify 
operations
– RenderMan, ISL, HLSL, Cg, GLSL

● Compile instructions into program
– e.g. glCompileShader()

● Shader performs calculations as part of 
graphics pipeline

● Runs calculations on GPU instead of CPU



   

What is a Shader Language?

● Typically C/C++ like
– for, while, if, ... for control flow
– Adds special types like vec4 (4 component 

vector) and mat4 (4x4 matrix) and operators
– Predefined variables used to get data 

(gl_Vertex) and return result (gl_Position)

● Simplifies and extends C/C++ for 
efficiency
– Matrix & vector operations supported in 

hardware Graphics Processing Unit (GPU)
– Built-in functions like normal, blend, etc.



   

GL Shader Language (GLSL)
● Often call “GLSLang”
● Added to OpenGL 2.0

– First appeared as extension in OpenGL 1.4
– Can be accessed in older versions using 

extentions
– GL Extension Wrangler (GLEW) often used

● Geared to real time graphics
– Inserted into OpenGL pipeline
– Vertex Shader to manipulate vertexes
– Fragment Shader to manipulate pixels



   

OpenGL Deprecation
● I will mostly use OpenGL 2.x

– Feature rich
– Flat learning curve
– More advanced examples will use 3.x and 4.x

● OpenGL Core Profile concentrates on rendering
– Improved execution time performance

● User must provide deprecated functionality
– Steepens the learning curve
– Deprecated features in Compatibility Profile
– Increases reliance on third party libraries



   

Where does GLSL fit?
● Vertex shader

– Transformations, color, texture 
coordinates, ...

● Fragment shader
– Textures, Color Interpolation, Fog, ...

● OpenGL still does Z-buffering, etc.



   

Fixed Pipeline Example



   

How is this different from what
we have done before?

● GLSL instructions can run on GPU
– Matrix-vector multiplications done fast

● Without GLSL we influence the pipeline 
using parameters and fixed operations
– Lighting calculated at vertexes
– Textures calculated at fragments
– Vertex-frament interpolation

● GL_SMOOTH bilinear interpolation
● GL_FLAT constant using last vertex

● With GLSL we can calculate values directly



   

How does this work with 
OpenGL?



   

Other Shader Languages

● RenderMan
– Lucasfilm - Pixar - Disney

● OpenGL Shader (ISL)
– SGI Interactive Shader Language

● High-Level Shader Language (HLSL)
– Microsoft DirectX 9

● NVIDIA's Cg
– proprietary shading language



   

RenderMan

● First practical shading language (1988)
● De-facto entertainment industry standard
● Remains in widespread use today
● Generally used for off-line rendering

– Uncompromising image quality
– Little hardware acceleration

● Credits:
– Jurassic Park, Star Wars Prequels, Lord of the Rings
– Toy Story, Finding Nemo, Monsters Inc, ...

● No relation to OpenGL in syntax or structure



   

The Rest (ISL, HLSL, Cg, ...)

● Syntax different but similar approach
● Generally similar in structure

– Vertex Shader
– Fragment Shader

● Geared towards real time graphics
– Hardware support
– Performance stressed



   

GLSL Versions
● GLSL 1.0 = OpenGL 1.4 (2002)

– The first portable shader

● GLSL 1.2 = OpenGL 2.0 (2004)
– The shader we will use

● GLSL 1.3 = OpenGL 3.0 (2008)
– Some changes in syntax
– Deprecates some features

● GLSL 3.3 = OpenGL 3.3
– From here on GLSL version match OpenGL

● Set minimum version using #version



   

GLSL 1.2 Variable Qualifiers
● uniform (e.g. gl_ModelViewMatrix)

– input to vertex and fragment shader from 
OpenGL or application [read-only]

● attribute  (e.g. gl_Vertex)
– input per-vertex to vertex shader from 

OpenGL or application [read-only]

● varying  (e.g. gl_FrontColor)
– output from vertex shader [read-write], 

interpolated, then input to fragment shader 
[read-only]

● const  (e.g. gl_MaxLights)
– compile-time constant [read-only]



   

The problem with shaders
● EXTREMELY hard to debug

– No “print” statements

● You have to have to do lighting yourself
● Support is spotty

– GLSL requires OpenGL 2.0 or extensions
– Some features are very new
– Generally needs decent hardware

● So why use it?
– Ultimate flexibility
– Unsupported features (e.g. bump maps)



   

Installing Qt
● Get Qt 5 from http://www.qt.io/download/

– Open source is free but requires sharing 

● Ubuntu:
– apt-get install qt5-default

● OSX
– Install Xcode with command line tools
– Install Qt

● Windows
– Install mingw
– Install Qt

http://www.qt.io/download/


   

Using Qt

● Use QOpenGLWidget
– Introduced in Qt 5.4
– Replaces older QGLWidget
– The changes are mostly internal
– Methods are the same, so painless migration

● Expand on my examples
– Starting with my examples as a framework 

flattens the learning curve
– Make sure you understand what is going on
– CUgl class used in later examples



   

Building hw01 with Qt

● Create hw01.pro
● Edit source code
● Run qmake hw01.pro to build makefile
● Compile using make
● Run hw01
● Before ZIPing run make distclean
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