GPU Computation CSCI 4239/5239 Advanced Computer Graphics Spring 2020

Solutions to Parallel Processing

• Message Passing (distributed)

– MPI (library)

- Threads (shared memory)
 - pthreads (library)
 - OpenMP (compiler)
- GPU Programming (shared bus)
 - CUDA (compiler)
 - OpenCL (library)
 - OpenACC (compiler)
 - GLSL Compute Shader

Using the GPU for Computation

- The GPU is very good at floating point. How can we use that to do computations?
 - Write a shader and be the result be a pseudo-color
 - Use CUDA with nVidia hardware
 - Use OpenCL with general hardware
 - Use an OpenGL 4.3 Compute Shader
- Issues
 - Getting instructions and data to the GPU
 - Precision of computations

Text/Notes

- Programming massively Parallel Processors

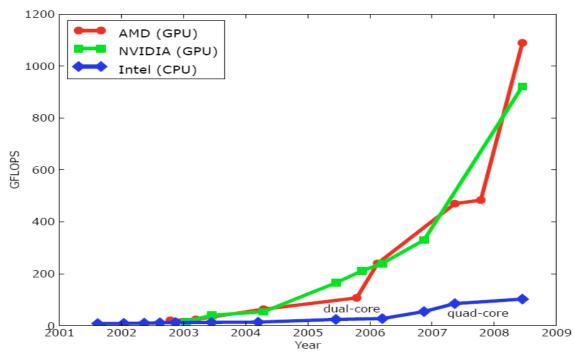
 Kirk and Hwu
 - Good introduction to CUDA and OpenCL
 - Examples, tips and Tricks
 - Most slides taken from their lecture notes
- CUDA by Example
 - Sanders and Kandrot
 - CUDA only
 - Examples

History of Coprocessors

- Floating point option
 - 8087, 80287, Weitek
- Floating Point Systems Array Processors
 - Attaches to VAX
- DSP chips
- Analog and special purpose CPUs
- Graphics Processors

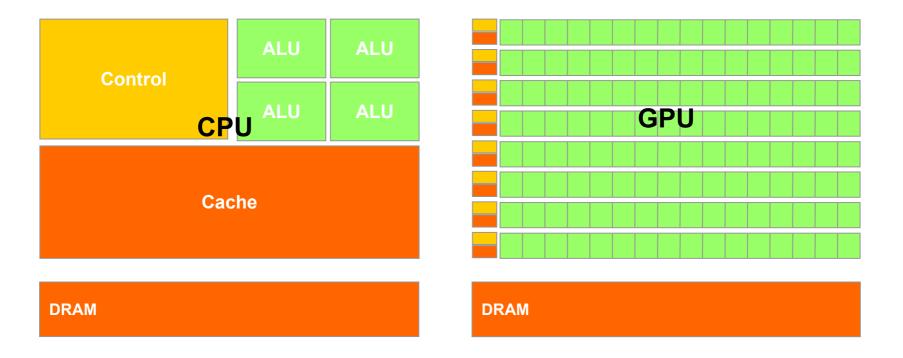
Why Massively Parallel Processor

- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until 2006, programmed through graphics API

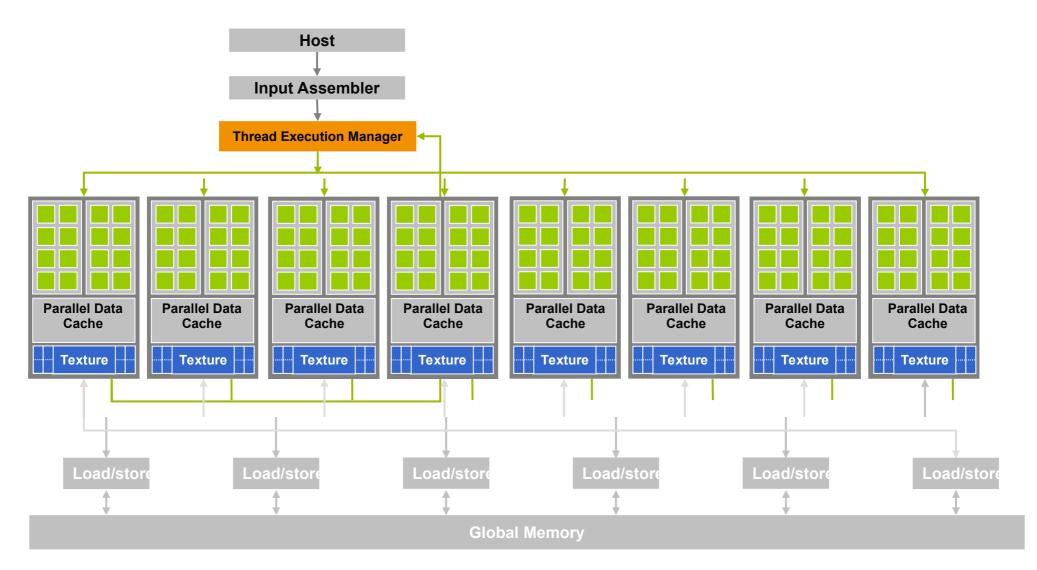


 GPU in every PC and workstation – massive volume and potential impact

CPUs and GPUs have fundamentally different design philosophies



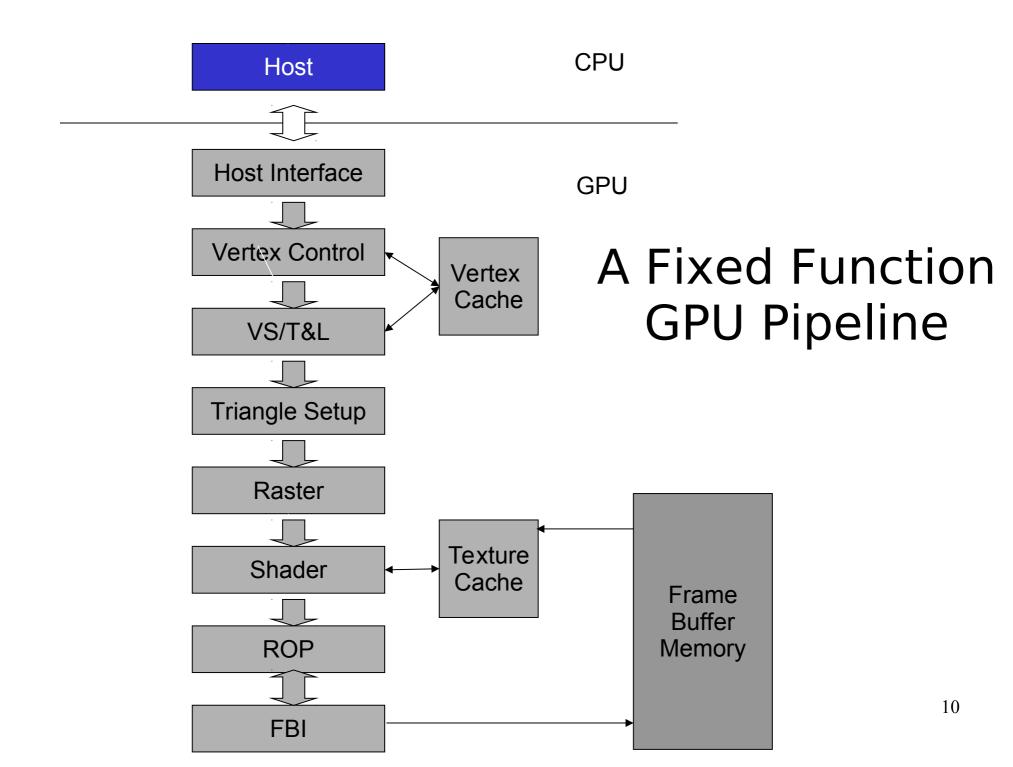
Architecture of a CUDA-capable GPU



GT200 Characteristics

- 1 TFLOPS peak performance (25-50 times of current high-end microprocessors)
- 265 GFLOPS sustained for apps such as VMD
- Massively parallel, 128 cores, 90W
- Massively threaded, sustains 1000s of threads per app
- 30-100 times speedup over high-end microprocessors on scientific and media applications: medical imaging, molecular dynamics
- "I think they're right on the money, but the huge performance differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s) will invite close scrutiny so I have to be careful what I say publically until I triple check those numbers."

-John Stone, VMD group, Physics UIUC



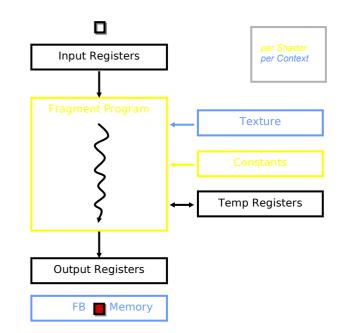
Unified Graphics Pipeline

What is (Historical) GPGPU ?

- General Purpose computation using GPU and graphics API in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation
- Applications see GPGPU.org
 - Game effects (FX) physics, image processing
 - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

Previous GPGPU Constraints

- Dealing with graphics API
 - Working with the corner cases of the graphics API
- Addressing modes
 - Limited texture size/dimension
- Shader capabilities
 - Limited outputs
- Instruction sets
 - Lack of Integer & bit ops
- Communication limited
 - Between pixels
 - Scatter a[i] = p



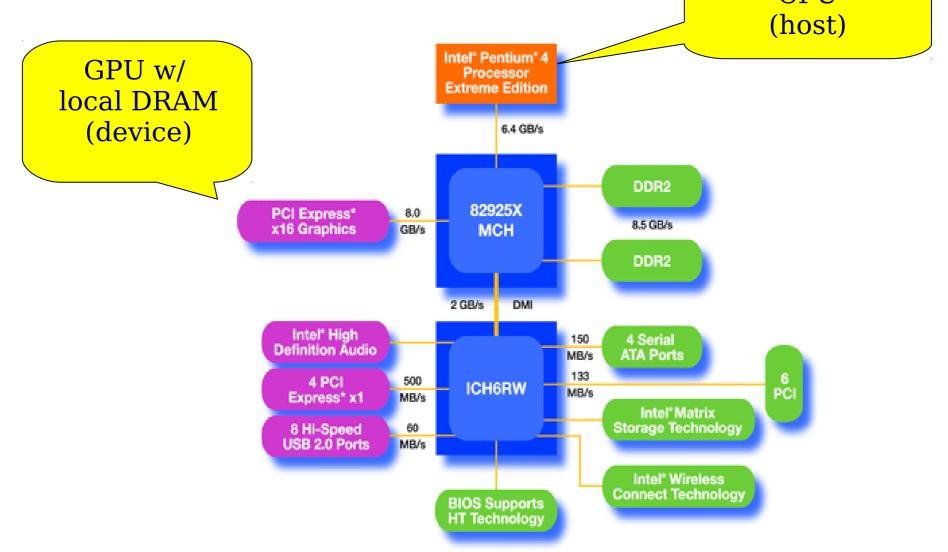
Compute Shaders

- Shader buffers for memory access
- Shader has access to entire array for both read and write
- Compute shader compiled using OpenGL
- Requires OpenGL 4.3

CUDA

- "Compute Unified Device Architecture"
- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel coprocessor
- Targeted software stack
 - Compute oriented drivers, language, and tools
- Driver for loading computation programs into GPU
 - Standalone Driver Optimized for computation
 - Interface designed for compute graphics-free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management

An Example of Physical Reality Behind CUDA



Parallel Computing on a GPU

- 8-series GPUs deliver 25 to 200+ GFLOPS on compiled parallel C applications

 Available in laptops, desktops, and clusters
- GPU parallelism is doubling every year
- Programming model scales transparently
- Programmable in C with CUDA tools
- Multithreaded SPMD model uses application data parallelism and thread parallelism

Overview

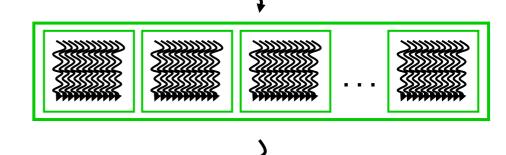
- CUDA programming model basic concepts and data types
- CUDA application programming interface
 basic
- Simple examples to illustrate basic concepts and functionalities
- Performance features will be covered later

CUDA – C with no shader limitations!

- Integrated host+device app C program
 - Serial or modestly parallel parts in host C code
 - Highly parallel parts in **device** SPMD kernel C code

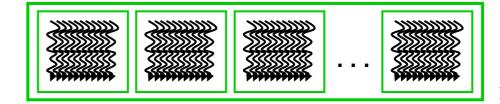
Serial Code (host)

Parallel Kernel (device) KernelA<<< nBlk, nTid >>>(args);



Serial Code (host)

Parallel Kernel (device) KernelB<<< nBlk, nTid >>>(args);

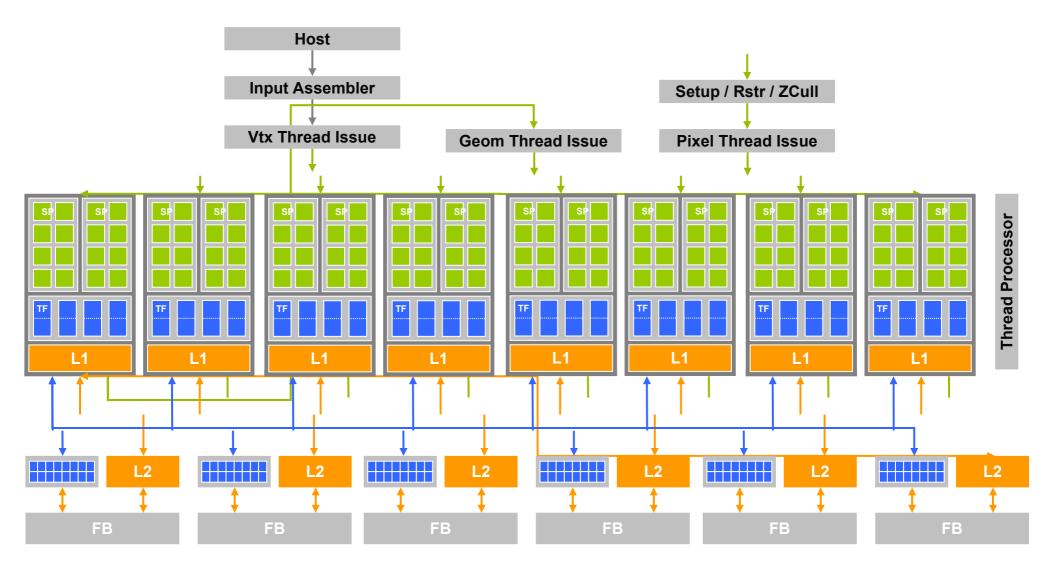


CUDA Devices and Threads

- A compute device
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
 - Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

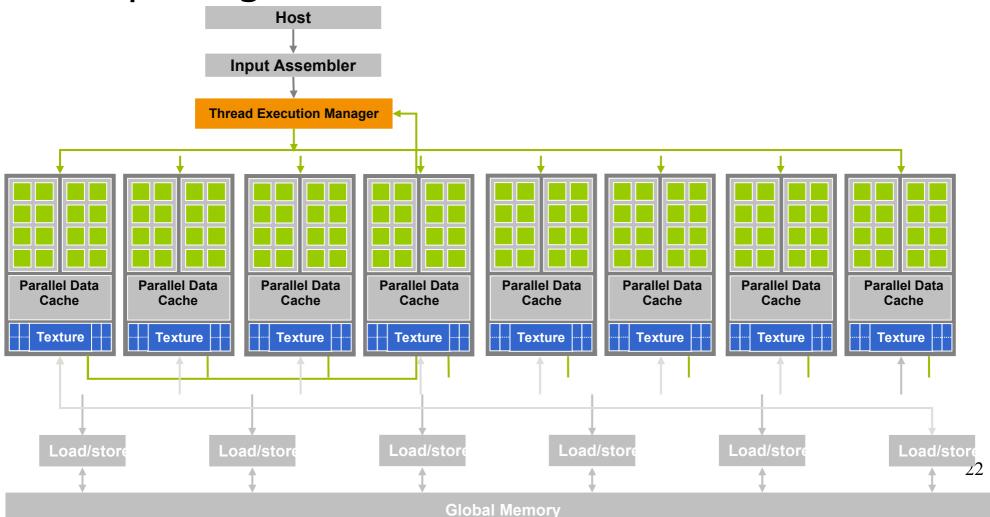
G80 – Graphics Mode

- The future of GPUs is programmable processing
- So build the architecture around the processor



G80 CUDA mode – A **Device** Example

- Processors execute computing threads
- New operating mode/HW interface for computing



Extended C

- Declspecs
 - global, device, shared, local, constant
- Keywords
 - threadIdx, blockIdx
- Intrinsics
 - __syncthreads
- Runtime API
 - Memory, symbol, execution management
- Function launch

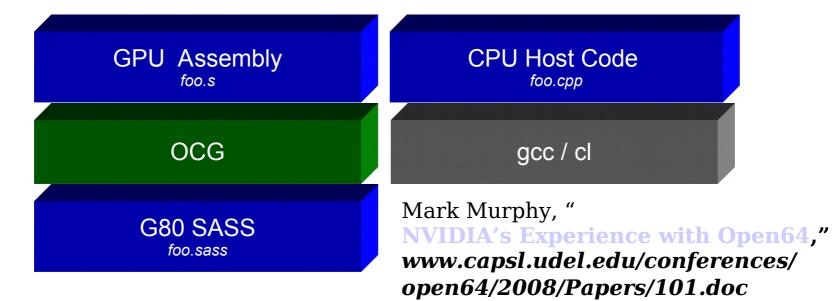
```
__device__ float filter[N];
__global__ void convolve (float *image) {
    __shared__ float region[M];
    ...
    region[threadIdx] = image[i];
    __syncthreads()
    ...
    image[j] = result;
}
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
```

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Extended C

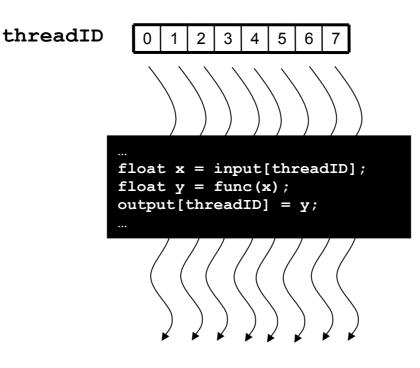
Integrated source (foo.cu)

cudacc EDG C/C++ frontend Open64 Global Optimizer



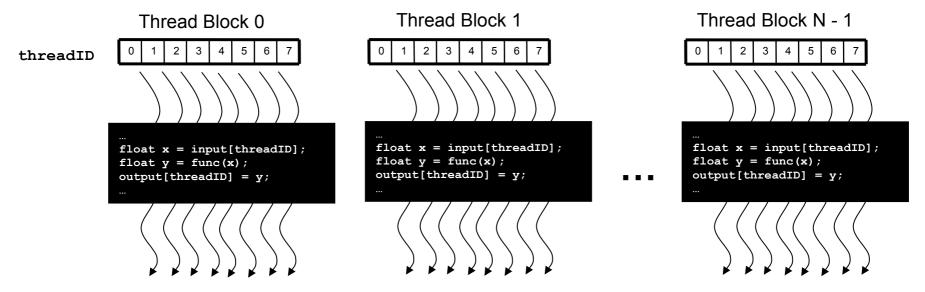
Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
 - All threads run the same code (SPMD)
 - Each thread has an ID that it uses to compute memory addresses and make control decisions

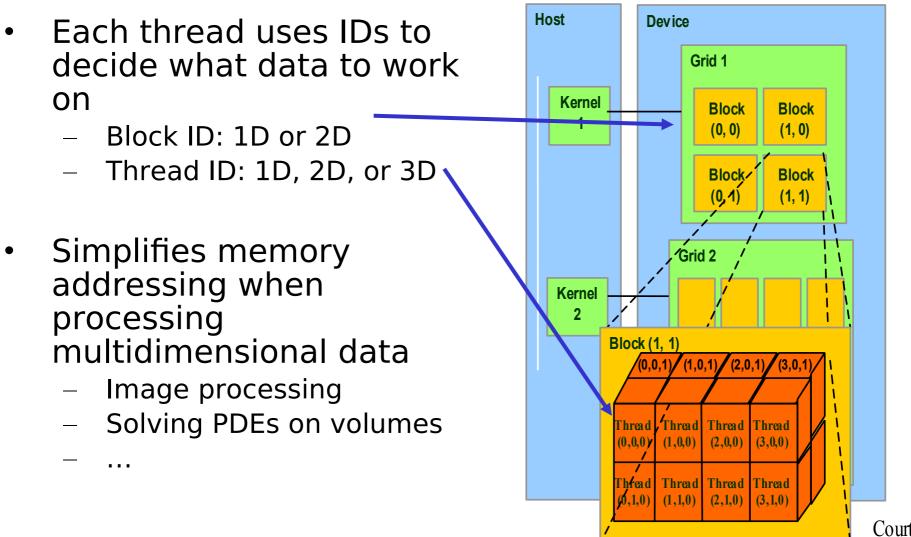


Thread Blocks: Scalable Cooperation

- Cooperation
 Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks cannot cooperate



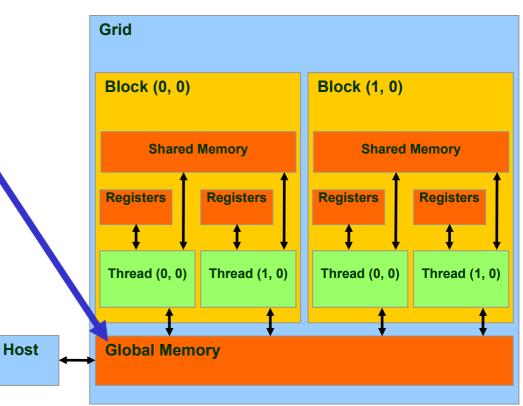
Block IDs and Thread IDs



Courtesy: NDVIA

CUDA Memory Model Overview

- Global memory
 - Main means of communicating R/W Data between host and device
 - Contents visible to all threads
 - Long latency access
- We will focus on global memory for now
 - Constant and texture memory will come later



CUDA API Highlights: Easy and Lightweight

 The API is an extension to the ANSI C programming language

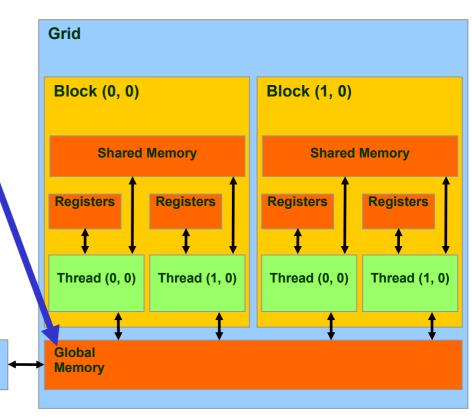
Low learning curve

- The hardware is designed to enable lightweight runtime and driver
 - High performance

CUDA Device Memory Allocation

Host

- cudaMalloc()
 - Allocates object in the device <u>Global Memory</u>
 - Requires two parameters
 - Address of a pointer to the allocated object
 - Size of of allocated object
- cudaFree()
 - Frees object from device
 Global Memory
 - Pointer to freed object



CUDA Device Memory Allocation (cont.)

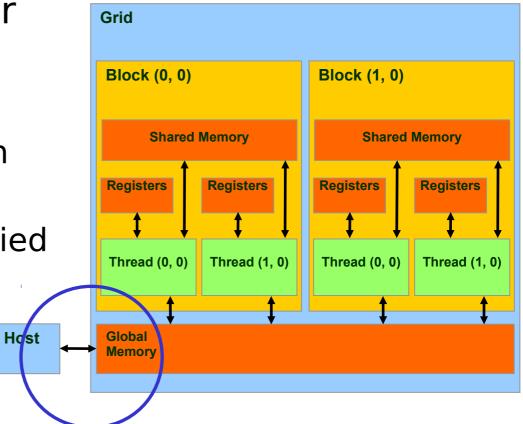
- Code example:
 - Allocate a 64 * 64 single precision float array
 - Attach the allocated storage to Md
 - "d" is often used to indicate a device data structure

```
TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);
```

```
cudaMalloc((void**)&Md, size);
cudaFree(Md);
```

CUDA Host-Device Data

- cudaMemcpy()
 - memory data transfer
 - Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device
- Asynchronous transfer



CUDA Host-Device Data Transfer (cont.)

- Code example:
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

CUDA Function Declarations

	Executed on the:	Only callable from the:
	device	device
	device	host
<pre>hostfloat HostFunc()</pre>	host	host

- __global___defines a kernel function
 __Must return void
- <u>device</u> and <u>host</u> can be used together

CUDA Function Declarations (cont.)

- <u>device</u> functions cannot have their address taken
- For functions executed on the device:
 - No recursion
 - No static variable declarations inside the function
 - No variable number of arguments

Calling a Kernel Function – Thread Creation

 A kernel function must be called with an execution configuration:

___global___ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

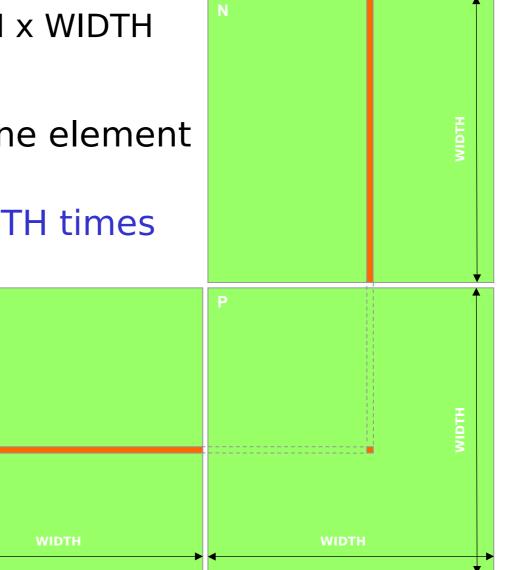
 Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking

A Simple Running Example Matrix Multiplication

- A simple matrix multiplication example that illustrates the basic features of memory and thread management in CUDA programs
 - Leave shared memory usage until later
 - Local, register usage
 - Thread ID usage
 - Memory data transfer API between host and device
 - Assume square matrix for simplicity

Programming Model: Square Matrix Multiplication Example

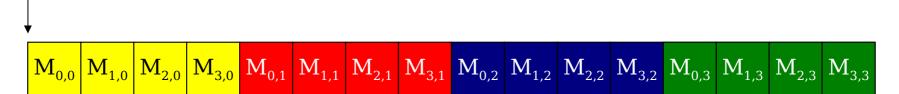
- P = M * N of size width x width
- Without tiling:
 - One thread calculates one element of P
 - M and N are loaded WIDTH times from global memory



Memory Layout of a Matrix in C

M _{0,0}	M _{1,0}	M _{2,0}	M _{3,0}
M _{0,1}	M _{1,1}	M _{2,1}	M _{3,1}
M _{0,2}	M _{1,2}	M _{2,2}	M _{3,2}
M _{0,3}	M _{1,3}	M _{2,3}	M _{3,3}

 \mathbf{M}

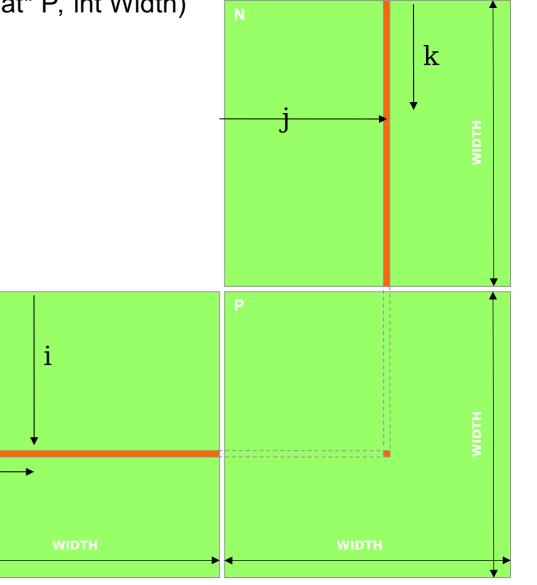


Matrix Multiplication A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int Width)

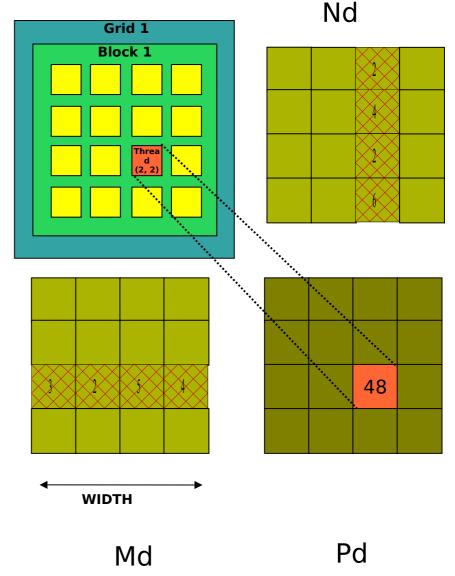
k

```
for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
    double sum = 0;
    for (int k = 0; k < Width; ++k) {
        double a = M[i * width + k];
        double b = N[k * width + j];
        sum += a * b;
    }
    P[i * Width + j] = sum;</pre>
```



Threads and Blocks

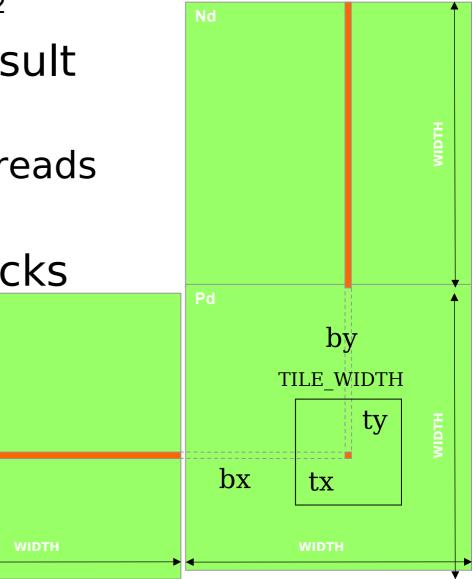
- One Block of threads compute matrix Pd
 - Each thread computes one element of Pd
- Each thread
 - Loads a row of matrix Md
 - Loads a column of matrix Nd
 - Perform one multiply and addition for each pair of Md and Nd elements
 - Compute to off-chip memory access ratio close to 1:1 (not very high)
- Size of matrix limited by the number of threads allowed in a thread block



Tiled Kernel Function

- Have each 2D thread block to compute a (TILE_WIDTH)² sub-matrix (tile) of the result matrix
 - Each has (TILE_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/TILE_WIDTH)² blocks

You still need to put a loop around the kernel call for cases where WIDTH/TILE_WIDTH is greater than max grid size (64K)!



Kernel Function Code

// Matrix multiplication kernel

```
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
```

// Index of thread unsigned int j = blockIdx.x*blockDim.x+threadIdx.x; unsigned int i = blockIdx.y*blockDim.y+threadIdx.y;

```
// Calculate element value
float sum = 0;
for (int k=0;k<n;k++)
    sum += A[i*n+k] * B[k*n+j];</pre>
```

```
// Store element value
C[i*n+j] = sum;
```

}

Step 1: Copy Input Data

```
void MatrixMulOnDevice(float* M, float* N, float* P, int Bw, int Bn)
ł
 int Width = Wb*Bn:
 int size = Width * Width * sizeof(float);
  float* Md, Nd, Pd;
 // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
 // Allocate P on the device
 cudaMalloc(&Pd, size);
```

Step 2: Kernel Invocation

// Setup the execution configuration dim3 dimGrid(Bw, Bw); dim3 dimBlock(Bn, Bn);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Bw*Bn);

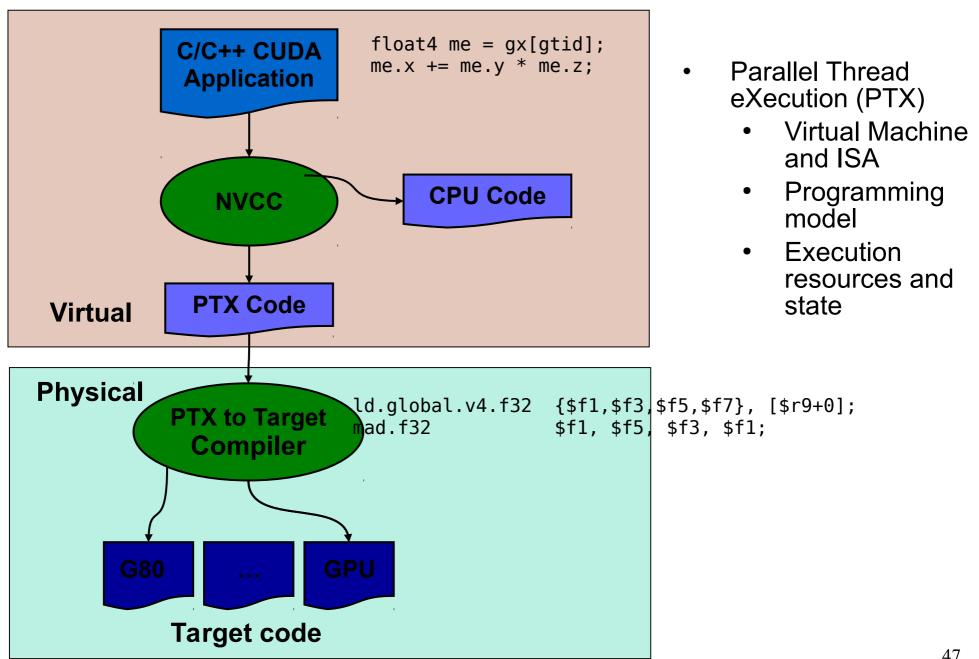
Step 3: Copy Output Data

// Read P from the device cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

Compiling a CUDA Program



Compilation

- Any source file containing CUDA language extensions must be compiled with NVCC
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC outputs:
 - C code (host CPU Code)
 - Must then be compiled with the rest of the application using another tool
 - PTX
 - Object code directly
 - Or, PTX source, interpreted at runtime

Linking

- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cudart)
 - The CUDA core library (cuda)

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- Running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of <u>syncthreads</u>

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads could produce different results.
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode

Floating Point

- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs, instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host