Geometry Shader CSCI 4239/5239 Advanced Computer Graphics Spring 2021

What is it?

- Create new primitives
 - Point \rightarrow Polygon
- Inserted between vertex shader and fragment shader
- Changes each gl_Vertex into multiple vertexes

OpenGL Implementation

- Create and compile just like others
 - glCreateShader(GL_GEOMETRY_SHADER)
- Requires additional parameters
 - In the program (OpenGL 3.2)
 - glProgramParameteri(prog,par,val);
 - GL_GEOMETRY_INPUT_TYPE
 - GL_GEOMETRY_OUTPUT_TYPE
 - GL_GEOMETRY_VERTICES_OUT
 - In the shader (OpenGL 3.3)
 - layout(type) in;
 - layout(type,max_vertices=n) out;

GLSL Implementation

- Set vertex parameters like in vertex shader
 - out Color
 - out Tex2D
 - gl_Position
- Call EmitVertex(); when done
- Call EndPrimitive(); after last vertex

Application: n-Body Problem

- Movement of n bodies under gravitational influence
- Classical problem in computational dynamics
- Hard because effort grows as n²
- Display locations of bodies

Digression: OpenMP

- Multi-threaded approach
 - Lightweight
 - Needs shared memory
- API supported in C/C++ using pragmas #pragma omp parallel for for (k=0;k<N;k++) foo(k);
- Simple to use
- Needs compiler support
 - gcc -fopenmp

Ex 17: OpenMP+Geometry Shader

- Solve n-Body problem using OpenMP
 - Euler integration
 - Ping-Pong implementation
- Use geometry shader to turn points into a quad and billboard
 - Apply texture to point
 - Blend to add

• Example of a particle shader