CSCI 4229/5229 Computer Graphics Summer 2021

Course Objectives

- Class: Theory and principles
 - Attendance is highly encouraged
- Assignments: Practical OpenGL
 - Applications
- No tests or exams
- By the end of the course you will:
 - Be conversant in computer graphics principles
 - Be well versed in the use of OpenGL
 - Understand what OpenGL does internally

Class Attendance

- It is highly recommended that you join the live Zoom class
 - Permits real time interaction
 - Amplifies expectations and issues related to assignments
 - Additional examples
- Zoom etiquette
 - Mute yourself when joining
 - It is OK to interrupt if I don't notice your raised hand or question in the chat window
 - Turn on your camera when participating in an ongoing discussion

Course Outline

- Basics (1/3)
 - Projections, transformations, clipping, rendering, text, color, hidden edge and surface removal, and interaction
- Advanced (1/3)
 - Illumination, shading, transparency, texture mapping, parametric surfaces, shaders
- Project (1/3)
 - Whatever you're interested in: games, modeling, visualization, 'Google Earth',

Why OpenGL?

- Modern, widely used and actively supported
 - Games
 - 3D visualization
- Cross platform
 - Windows
 - Mac
 - *NIX
 - iPhone and Android
- Open source and vendor implementations
 - MESA 3D (source code available)
- Many language bindings

Instructor

- Willem A (Vlakkies) Schreüder
- Email: vlakkies@colorado.edu
 - Begin subject with 4229 or 5229
 - I have a draconian mail filter
 - Resend email not answered promptly
- Office Hours (Zoom):
 - Before and after Class
 - By appointment
- Weekday Contact Hours: 6:30am 9:00pm

Assumptions

- You need to be fluent in C
 - Examples are in C
 - You need to know how to program and compile
 - You can do assignments in any language
 - I may need help getting it to work on my system
 - Use C or C++ unless you have a good reason
- You need to be comfortable with linear algebra
 - Vectors, surfaces, normals
 - Matrix and Vector multiplication
 - Dot and cross products
 - Rotation matrices

Grading

- Satisfactory complete all assignments => A
 - The goal is to impress your friends
- Assignments *must* be submitted on time unless prior arrangements are made
 - Most due Sunday evening 11:59 pm
 - Grace period until Monday morning at 08:00am
 - Assignments emailed or attached as comments on Canvas will not be accepted
 - BBA students: Let me know about exceptions
- Assignments must be completed individually
 - Stealing ideas are permitted
 - OpenGL code fragments from web may be used
 - Make it your own and improve on it

Grading Expectations

- Code reuse is acceptable
 - Give credit where it is due
 - You take responsibility for errors in reused code
 - You need to make a substantial improvement
 - I'm looking to see that you have insight in the material and put in a significant effort
 - Simply turning in an assignment from a previous semester with minimal changes is *not* acceptable
- No grade => respond to my comments and resubmit
- Grade <100 means NOT SATISFACTORY (not an A)

Example Programs

- Illustrates specific aspects
 - mode variable heavily overloaded
 - one concept at a time
- Designed to be a starting point
 - you are expected to improve on it
 - cut and paste will not get you an A
- The course is no intended to teach OpenGL, but rather the principles underlying graphics

Text

- OpenGL Programming Guide (9ed)
 - Shreiner et al.
 - "OpenGL Vermilion Book"
 - Older edition was the "OpenGL Red Book"
 - Download early editions as PDF
 - Recommended but not required

Other Texts

- OpenGL: A Primer, 3/E
 - Edward Angel
 - An excellent and very accessible
 - Inexpensive
 - Third edition adds new material (shaders)
- OpenGL SuperBible: Comprehensive Tutorial and Reference (7ed)
 - Wright, Haemel, Sellers & Lipchak
 - Good all-round theory and applications
 - 6e & 7e is all OpenGL 4 which is a challenge

Theoretical text

- Computer Graphics: Principles & Practice (3ed)
 - Foley, van Dam, et. al.
 - Avoid 1ed (Pascal), 2ed (very dated)
 - Get it if you want to know more of the theory

Embedded OpenGL texts

- OpenGL ES 3.0 Programming Guide
 - Munshi, Ginsburg, Schreiner
 - OpenGL Embeded Systems (iPhone & Android)
 - Subset of OpenGL, 1.3 and 2.0 very different
 - Not recommended for beginners
- iPhone 3D Programming
 - Philip Rideout (O'Reilly series)
 - iPhone specific, but C/C++ oriented so translates well to Android (using the NDK)
 - My personal favorite for portable OpenGL ES

OpenGL Resources

- Safari
- www.google.com
 - Need I say more?
- www.opengl.org
 - Code and tutorials
- nehe.gamedev.net
 - Excellent tutorials
- www.mesa3d.org
 - Code of "internals"
- Class forum

- Due: Wednesday June 2 at noon
- Find the course on Canvas
- Submit
 - Your name and study area
 - Platform (Hardware, Graphics, OS, ...)
 - Background and interests in computer graphics
 - Project ideas (if you have one already)
 - BBA students let me know about special circumstances and schedules
 - Office hours

My information

- Mathematical modeling, simulation and data analysis
 - PhD Computational Fluid Dynamics [1986]
 - PhD Parallel Systems (CU Boulder) [2005]
 - President of *Principia Mathematica*
- Use graphics for scientific visualization
- Open source bigot
- Program in C, C++, Fortran and Perl

Zoom Considerations

- Who Am I Zoom:
 - Wednesday June 2 at 3pm-5pm
 - Turn on your camera so I see you at least once
 - This will have a waiting room be patient.
- Mute your audio when joining.
- If you have a question:
 - Ask a question in chat
 - If I don't notice the chat question, unmute yourself and interrupt me.
- For other office hours email me and I will send you a Zoom invite

Homework Assignments

Hw 0: Who Am I

Hw 1: Visualizing the Lorenz Attractor

Hw 2: Drawing Scene in 3D

Hw 3: Lighting and Textures

Hw 4: Project Proposal

Hw 5: Project Review

Hw 6: Project Final

How to get started

- Get OpenGL to work on your platform
 - Installing OpenGL with GLUT
 - Compile and run Hello World examples
- If you are using Windows
 - Install MSYS2 and use pacman
 - Compile with -DUSEGLEW (see my examples)
- If you are on an X based (*NIX) platform:
 - yum install freeglut-devel
 - apt-get install freeglut3-dev
 - Run glxinfo and check if direct rendering: yes
- OS/X based on OpenGL
 - Xcode command line
 - homebrew for glfw, SDL, etc.

- Due: Sunday June 6 at 23:59
- Write an OpenGL based visualization of the Lorenz Attractor
 - At a minimum show a line path in 3D
 - User control of attractor parameters
 - Change view angle using cursor keys
 - Use your imagination
- The purpose is scientific visualization
 - Do some sciencehttp://mathworld.wolfram.com/LorenzAttractor.html
- Example 6 is your friend

- Due: Sunday June 13 at 23:59
- Write an program to visualize a 3D scene
- Scene must consist of solid 3D objects
 - You must create all objects yourself
 - no GLU/GLUT or imported objects
 - You must replicate some generic objects
- Scene must be viewable from different vantage points under user control
- Generate scene in orthogonal, add perspective and first person navigation

- Due: Sunday June 20 at 23:59
- Write an program to visualize a 3D scene with lighting and textures
 - Make the light move to show lighting effects
 - Select solid objects that show lighting effects
- Add lighting to Assignment 2
- Then add textures
- WARNING: This homework is a LOT harder than the first two

Project

- Should be a program with a significant graphics component
 - Something useful in your research/work?
 - Graphical front end to simulation
 - Graphical portion of a game
 - Expect more from graduate students
- Deadlines
 - Proposal: Mon June 21 23:59pm
 - Review: **Sun June 27 23:59pm**
 - Final: **Wed June 30 23:59pm**
- Homeworks should lay the groundwork

Project Grading

- Half the total grade for the class
- The grade assigned for the *final* submission is what is counted
- Grades assigned for the review are my assessment of what that final grade will be, and is not counted towards the class grade
 - Canvas is not smart enough to do this, so don't go by the totals it gives you

CSCI 4239/5239 Advanced Computer Graphics

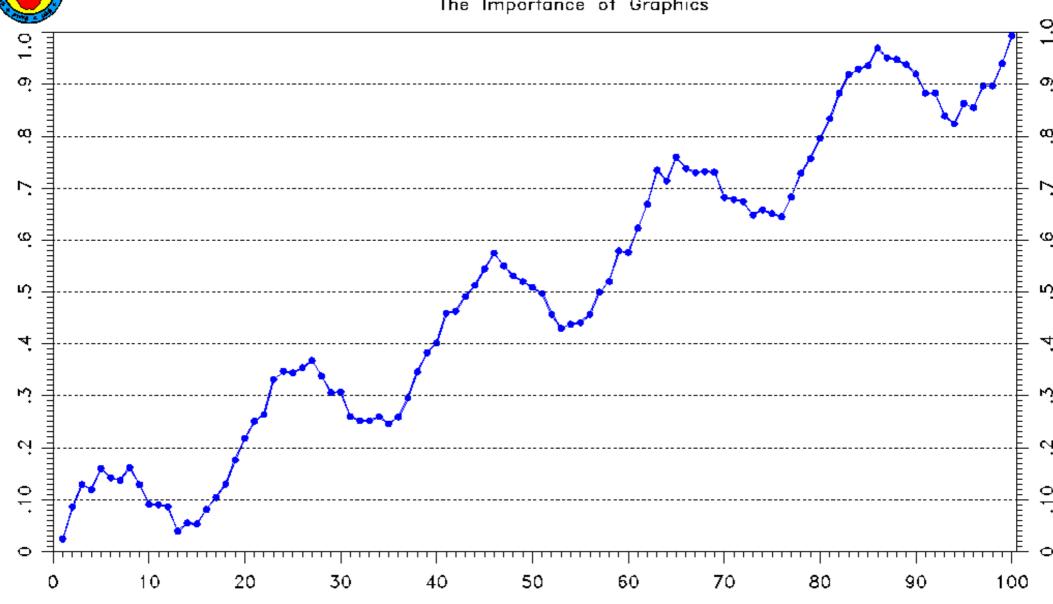
- Shaders
 - Programing the GPU
- Embedded Systems
 - iPhone, Android, WebGL
- GPU work threads (CUDA & OpenCL)
- Ray Tracing

Nuts and Bolts

- Complete assignments on any platform
 - Assignments reviewed under Ubuntu 20.04
- Submit using Canvas
 - ZIP
 - Name executables hw1, hw2, ...
 - Create a makefile so I can do make clean; make
 - Set window title to Assignment X: Your Name
- Include number of hours spent on task
- Check my feedback and resubmit if requested
- This is a big class, PLEASE submit cleanly

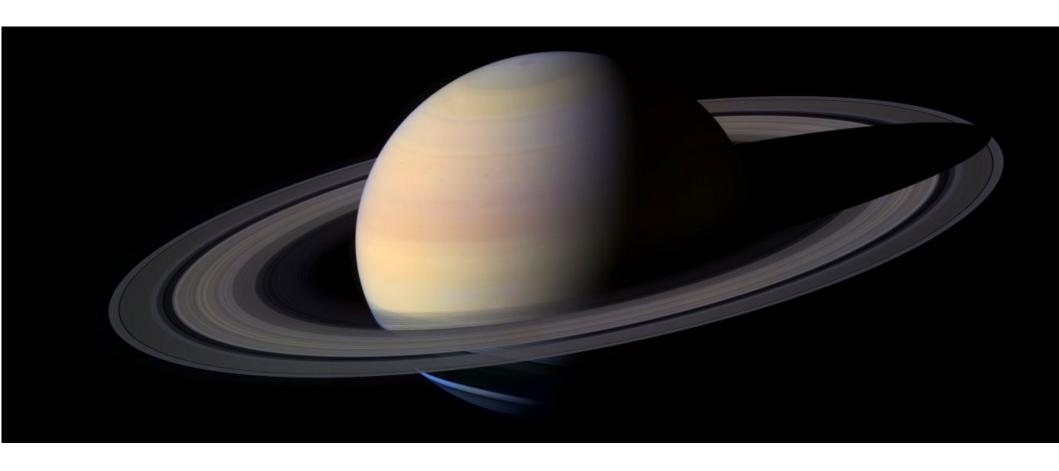
A few hints

- My machine runs Linux x86_64
 - gcc/g++ with nVidia & GLX
 - -Wall is a **really** good idea
 - case sensitive file names
 - int=32bit, long=64bit
 - little-endian
 - fairly good performance
- How to make my life easier
 - Try it on a Linux box
 - Stick to C/C++ unless you have a good reason to use something else
- · Maintain thy backups...


The Importance of Graphics: 100 Values between 0 and 1

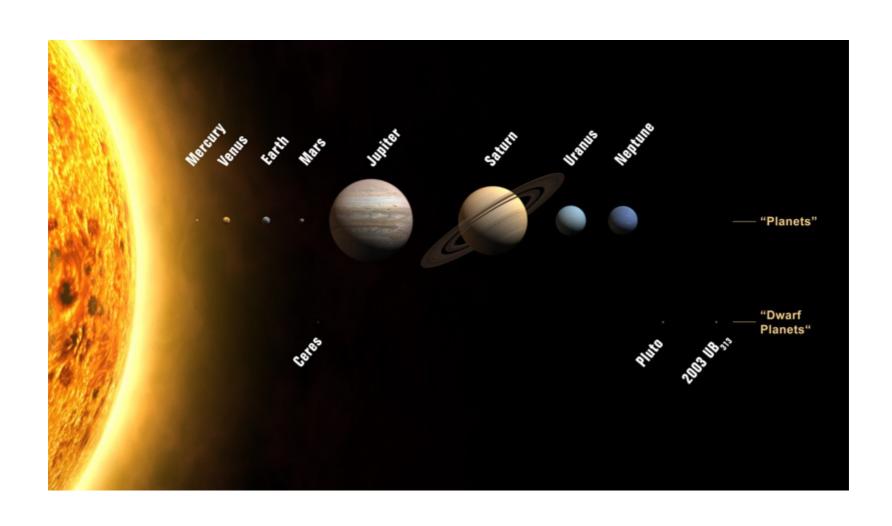
0.02	4 0.086	0.129	0.119	0.160	0.142	0.137	0.162	0.129	0.091
0.09	0.086	0.039	0.055	0.053	0.081	0.104	0.130	0.176	0.218
0.25	1 0.264	0.331	0.347	0.344	0.354	0.368	0.338	0.306	0.307
0.26	0.252	0.252	0.260	0.246	0.259	0.296	0.346	0.383	0.402
0.45	9 0.463	0.491	0.513	0.544	0.575	0.550	0.531	0.520	0.509
0.49	7 0.457	0.430	0.438	0.441	0.457	0.500	0.520	0.579	0.576
0.62	3 0.669	0.735	0.714	0.760	0.738	0.730	0.732	0.731	0.682
0.67	8 0.674	0.648	0.658	0.651	0.645	0.683	0.729	0.757	0.796
0.83	4 0.883	0.919	0.929	0.936	0.970	0.951	0.948	0.938	0.920
0.88	3 0.883	0.839	0.824	0.863	0.855	0.897	0.897	0.940	0.994
		-	-	-	-			-	

100 Values between 0 and 1


The Importance of Graphics

Graphic Design

- 2D vs. 3D
 - Cool vs. informative
- Edward R. Tufte
 - Visual Explanations
 - Envisioning Information
 - The Visual Display of Quantitative Information
 - Beautiful Evidence


Saturn from Cassini Probe

Colorado Fall Colors

What is wrong with this picture?

In the beginning....

Storage Tube Terminals

Storage Display Images

Color: Multiple Pen Plotters

Raster Graphic Terminals

Color Inkjets

Workstations: Apollo DN 330 12 MHz 68020, 3MB RAM, 70MB disk

Workstation, Desktop, Laptop, Phone, Communicator..

Plotting Packages

- PLOT-10: Tektronix 4010 graphics
- PLOT88: PC graphics
- DISSPLA: NCAR graphics
- GINO: Portable graphics
- DIGLIB: LLNL device-independent, open source
- GKS: Graphics Kernel System (2D vector)
- PHIGS: 3D Interactive Graphics
- OpenGL and DirectX

The rise of OpenGL

- Originated as SGI IrisGL
- Vendor-neutral OpenGL controlled by ARB
- Hides the details of hardware
 - Software emulation when necessary
 - Hardware acceleration when possible
- Supports 2D to advanced 3D graphics
- Portable to most hardware and OS with WGL, AGL and GLX
- Hardware range from phones to Big Iron

Focus of OpenGL

- OpenGL 1 (1992)
 - Hardware abstraction
- OpenGL 2 (2004)
 - Add Shaders (Programming the GPU)
- OpenGL 3 (2008)
 - Focus on shaders and new hardware
 - Deprecates many features
- OpenGL 4 (2010)
 - Core & Compatibility Profiles
 - Merge desktop and embedded versions

Gaming and Graphics

- Text based/ASCII graphics (Pong, PacMan)
- 2D monochrome line graphics (Astroids)
- 2D images & sprites (Mario)
- 3D graphics
 - Flight Simulators (2D -> 3D)
 - First Person Shooters
 - Multi-player games
- Games push the envelope
 - Realism
 - Speed