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Course Objectives
● Class:  Theory and principles

– Attendance is highly encouraged
● Assignments:  Practical OpenGL

– Applications
● No tests or exams
● By the end of the course you will:

– Be conversant in computer graphics principles
– Be well versed in the use of OpenGL
– Understand what OpenGL does internally



  

Class Attendance
● It is expected that you join the live Zoom class

– Permits real time interaction
– Amplifies expectations and issues related to assignments
– Additional examples

● Zoom etiquette
– Mute yourself when joining
– It is OK to interrupt if I don’t notice your raised hand or question 

in the chat window
– Turn on your camera, especially when participating in a 

discussion



  

Course Outline
● Basics (1/3)

– Projections, transformations, clipping, rendering, text, color, 
hidden edge and surface removal,  and interaction

● Advanced (1/3)
– Illumination, shading, transparency, texture mapping, 

parametric surfaces, shaders
● Project (1/3)

– Whatever you're interested in:  games, modeling, 
visualization, 'Google Earth', ....



  

Why OpenGL?
● Modern, widely used and actively supported

– Games
– 3D visualization

● Cross platform
– Windows
– Mac
– *NIX
– iPhone and Android

● Open source and vendor implementations
– MESA 3D (source code available)

● Many language bindings



  

Instructor
● Willem A (Vlakkies) Schreüder
● Email: vlakkies@colorado.edu

– Begin subject with 4229 or 5229
● I have a draconian mail filter

– Resend email not answered promptly
● Office Hours (Zoom):

– Before and after Class
– By appointment 

● Weekday Contact Hours: 6:30am - 9:00pm



  

Assumptions
● You need to be fluent in C

– Examples are in C
– You need to know how to program and compile
– You can do assignments in any language

● I may need help getting it to work on my system
● Use C or C++ unless you have a good reason

● You need to be comfortable with linear algebra
– Vectors, surfaces, normals
– Matrix and Vector multiplication
– Dot and cross products
– Rotation matrices 



  

Grading
● Satisfactory complete all assignments => A

– The goal is to impress your friends
● Assignments must be submitted on time unless prior 

arrangements are made
– Most due Sunday evening 11:59 pm
– Grace period until Monday morning at 08:00am
– Assignments emailed or attached as comments on 

Canvas will not be accepted
● Assignments must be completed individually

– Stealing ideas are permitted
– OpenGL code fragments from web may be used
– Make it your own and improve on it



  

Grading Expectations
● Code reuse is acceptable

– Give credit where it is due
– You take responsibility for errors in reused code
– You need to make a substantial improvement

● I'm looking to see that you have insight in the material and put in a 
significant effort

● Simply turning in an assignment from a previous 
semester with minimal changes is not acceptable

● No grade => respond to my comments and resubmit
● Grade <100 means  NOT SATISFACTORY (not an A)



  

Example Programs
● Illustrates specific aspects

– mode variable heavily overloaded
– one concept at a time

● Designed to be a starting point
– you are expected to improve on it
– cut and paste will not get you an A

● The course is no intended to teach OpenGL, but 
rather the principles underlying graphics



  

Text
●  OpenGL Programming Guide (9ed)

– Shreiner et al.
– “OpenGL Vermilion Book”
– Older edition was the “OpenGL Red Book”
– Download early editions as PDF
– Recommended but not required



  

Other Texts
● OpenGL: A Primer, 3/E

– Edward Angel
– An excellent and very accessible
– Inexpensive
– Third edition adds new material (shaders)

● OpenGL SuperBible: Comprehensive Tutorial and 
Reference (7ed)
– Wright, Haemel, Sellers & Lipchak
– Good all-round theory and applications
– 6e & 7e is all OpenGL 4 which is a challenge



  

Theoretical text
● Computer Graphics: Principles & Practice (3ed)

– Foley, van Dam, et. al.
– Avoid 1ed (Pascal), 2ed (very dated)
– Get it if you want to know more of the theory



  

Embedded OpenGL texts
● OpenGL ES 3.0 Programming Guide

– Munshi, Ginsburg, Schreiner
– OpenGL Embeded Systems (iPhone & Android)
– Subset of OpenGL, 1.3 and 2.0 very different
– Not recommended for beginners

● iPhone 3D Programming
– Philip Rideout (O'Reilly series)
– iPhone specific, but C/C++ oriented so translates well to Android 

(using the NDK)
– My personal favorite for portable OpenGL ES



  

OpenGL Resources
● Safari
● www.google.com

– Need I say more?
● www.opengl.org

– Code and tutorials
● nehe.gamedev.net

– Excellent tutorials
● www.mesa3d.org

– Code of “internals”
● Class forum



  

Assignment 0
● Due: Wednesday June 4 at noon
● Find the course on Canvas
● Submit

– Your name and study area
– Platform (Hardware, Graphics, OS, ...)
– Background and interests in computer graphics
– Project ideas (if you have one already)
– Office hours availability
– A recent picture so I can recognize you



  

My information
● Mathematical modeling, simulation and data analysis

– PhD Computational Fluid Dynamics [1986]
– PhD Parallel Systems (CU Boulder) [2005]
– President of Principia Mathematica

● Use graphics for scientific visualization
● Open source bigot
● Program in C, C++, Fortran and Perl



  

Homework Assignments

Hw 0:  Who Am I
Hw 1:Visualizing the Lorenz Attractor
Hw 2:Drawing Scene in 3D
Hw 3:Lighting and Textures
Hw 4:Project Proposal
Hw 5:Project Review
Hw 6:Project Final



  

How to get started
● Get OpenGL to work on your platform

– Installing OpenGL with GLUT
– Compile and run Hello World examples

● If you are using Windows
– Install MSYS2 and use pacman
– Compile with -DUSEGLEW (see my examples)

● If you are on an X based (*NIX) platform:
– yum install freeglut-devel
– apt-get install freeglut3-dev
– Run glxinfo and check if direct rendering: yes

● OS/X based on OpenGL
– Xcode command line
– homebrew for glfw, SDL, etc.



  

Assignment 1
● Due: Sunday June 8 at 23:59
● Write an OpenGL based visualization of the Lorenz 

Attractor
– At a minimum show a line path in 3D
– User control of attractor parameters
– Change view angle using cursor keys
– Use your imagination

● The purpose is scientific visualization
– Do some science
http://mathworld.wolfram.com/LorenzAttractor.html

● Examples 6 and 7 are your friend



  

Assignment 2
● Due: Sunday June 15 at 23:59
● Write an program to visualize a 3D scene
● Scene must consist of solid 3D objects

– You must create all objects yourself
● no GLU/GLUT or imported objects

– You must replicate some generic objects
● Scene must be viewable from different vantage points 

under user control
● Generate scene in orthogonal, add perspective and first 

person navigation



  

Assignment 3
● Due: Sunday June 22 at 23:59
● Write an program to visualize a 3D scene with lighting 

and textures
– Make the light move to show lighting effects
– Select solid objects that show lighting effects

● Add lighting to Assignment 2
● Then add textures
● WARNING:  This homework is a LOT harder than 

the first two



  

Project
● Should be a program with a significant graphics component

– Something useful in your research/work?
– Graphical front end to simulation
– Graphical portion of a game
– Expect more from graduate students

● Deadlines
– Proposal: Mon June 23 23:59pm
– Review: Sun June 29  23:59pm
– Final: Wed July 2  23:59pm

● Homeworks should lay the groundwork



  

Project Grading
● Half the total grade for the class
● The grade assigned for the final submission is what is 

counted
● Grades assigned for the review are my assessment of what 

that final grade will be, and is not counted towards the class 
grade

– A good grade doesn't mean you can stop.  It anticipates that you 
will continue on that trajectory.



  

CSCI 4239/5239
Advanced Computer Graphics

● Shaders
– Programing the GPU

● Embedded Systems
–  iPhone,  Android, WebGL

● GPU work threads (CUDA & OpenCL)
● Ray Tracing (PBRT)



  

Nuts and Bolts
● Complete assignments on any platform

– Assignments reviewed under Ubuntu 22.04 LTS
● Submit using Canvas

– ZIP
– Name executables hw1, hw2, ... 
– Create a makefile so I can do make clean;make
– Set window title to Assignment X: Your Name

● Include number of hours spent on task
● Check my feedback and resubmit if requested
● This is a big class, PLEASE submit cleanly



  

A few hints
● My machine runs Linux x86_64

– gcc/g++ with nVidia & GLX
● -Wall is a really good idea

– case sensitive file names
– int=32bit, long=64bit
– little-endian
– fairly good performance

● How to make my life easier
– Try it on a Linux box
– Stick to C/C++ unless you have a good reason to use 

something else
● Maintain thy backups...



  

The Importance of Graphics:
100 Values between 0 and 1



  

The Importance of Graphics



  

Graphic Design
● 2D vs. 3D

– Cool vs. informative
● Edward R. Tufte

– Visual Explanations
– Envisioning Information
– The Visual Display of Quantitative Information
– Beautiful Evidence



  

Saturn from Cassini Probe



  

Colorado Fall Colors



  

What is wrong with this picture?



  

In the beginning....



  

Storage Tube Terminals



  

Storage Display Images



  

Color:  Multiple Pen Plotters



  

Raster Graphic Terminals



  

Color Inkjets



  

Workstations: Apollo DN 330
12 MHz 68020, 3MB RAM, 70MB disk



  

Workstation, Desktop, Laptop,
Phone, Communicator..



  

Plotting Packages
● PLOT-10: Tektronix 4010 graphics
● PLOT88: PC graphics
● DISSPLA: NCAR graphics
● GINO: Portable graphics
● DIGLIB: LLNL device-independent, open source
● GKS: Graphics Kernel System (2D vector)
● PHIGS: 3D Interactive Graphics
● OpenGL and DirectX



  

The rise of OpenGL
● Originated as SGI IrisGL
● Vendor-neutral OpenGL controlled by ARB
● Hides the details of hardware

– Software emulation when necessary
– Hardware acceleration when possible

● Supports 2D to advanced 3D graphics
● Portable to most hardware and OS with WGL, AGL and GLX
● Hardware range from phones to Big Iron



  

Focus of OpenGL
● OpenGL 1 (1992)

– Hardware abstraction
● OpenGL 2 (2004)

– Add Shaders (Programming the GPU)
● OpenGL 3 (2008)

– Focus on shaders and new hardware
– Deprecates many features

● OpenGL 4 (2010)
– Core & Compatibility Profiles
– Merge desktop and embedded versions



  

Gaming and Graphics
● Text based/ASCII graphics (Pong, PacMan)
● 2D monochrome line graphics (Astroids)
● 2D images & sprites (Mario)
● 3D graphics

– Flight Simulators (2D -> 3D)
– First Person Shooters
– Multi-player games

● Games push the envelope
– Realism
– Speed
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